FOXP2
From Wikipedia, the free encyclopedia
edit |
FOXP2 ("forkhead box P2") is a gene that is implicated in the development of language skills,[1] including grammatical competence.
Contents |
[edit] Introduction
FOXP2 is a member of the large FOX family of transcription factors. Information from known human mutations and mouse studies suggest that FOXP2 regulates genes involved in the development of tissues such as brain, lung, and gut. The exact identity of the genes FOXP2 regulates is still not known, however.
[edit] FOXP2 and human disease
Several cases of developmental verbal dyspraxia in humans have been linked to mutations in the FOXP2 gene[2]. Individuals have little or no cognitive handicaps but are unable to correctly perform the coordinated movements required for speech. fMRI analysis of these individuals performing silent verb generation and spoken word repetition tasks showed underactivation of Broca's area and the putamen, brain centers thought to be involved in language tasks. Because of this, FOXP2 has been dubbed the "speech and language gene". People with this mutation also experience symptoms not related to language (not surprisingly, as FOXP2 is known to affect development in other parts of the body as well).[3] Scientists have also looked for associations between FOXP2 and autism and both positive and negative findings have been reported [4][5].
There is some evidence that the linguistic impairments associated with a mutation of the FOXP2 gene are not simply the result of a fundamental deficit in motor control. For example:
- the impairments include difficulties in comprehension;
- brain imaging of affected individuals indicates functional abnormalities in language-related cortical and basal/ganglia regions, demonstrating that the problems extend beyond the motor system.
[edit] Function
FOXP2 is required for proper brain and lung development. Knockout mice with only one functional copy of the FOXP2 gene have significantly reduced vocalizations as pups[6]. Knockout mice with no functional copies of FOXP2 are runted, display abnormalities in brain regions such as the Purkinje layer, and die 21 days after birth from inadequate lung development.[7]
Different studies of FOXP2 in songbirds suggest that FOXP2 may regulate genes involved in neuroplasticity: During song learning FOXP2 is upregulated in brain regions critical for song learning in young zebra finches. Knockdown of FOXP2 in Area X of the basal ganglia of these birds results in incomplete and inaccurate song imitation.[8] Similarly, in adult canaries higher FOXP2 levels also correlate with song changes.[9] In addition, levels of FOXP2 in adult zebra finches are significantly lower when males direct their song to females than when they sing song in other contexts.[10] Differences between birds which are learning songs and those which are not have been shown to be caused by differences in FOXP2 gene expression, rather than differences in the amino acid sequence of the FOXP2 protein.[3]
FOXP2 has also been implicated in the development of bat echolocation.[11]
[edit] Evolution
The FOXP2 protein sequence is highly conserved. Similar FOXP2 proteins can be found in songbirds, fish, and reptiles such as alligators.[12][13] Aside from a polyglutamine tract, human FOXP2 differs from chimp FOXP2 by only two amino acids, mouse FOXP2 by only 3 amino acids, and zebra finch FOXP2 by only 7 amino acids.[14][15][16] A recent extraction of DNA from Neanderthal bones indicates that Neanderthals had the same version (allele) of the FOXP2 gene as modern humans.[17]
Some researchers have speculated that the two amino acid differences between chimps and humans led to the evolution of language in humans.[14] Others, however, have been unable to find a clear association between species with learned vocalizations and similar mutations in FOXP2.[12][13] Both human mutations occur in an exon with no known function. It is also likely, based on general observations of development and songbird results, that any difference between humans and non-humans would be due to regulatory sequence divergence (affecting where and when FOXP2 is expressed) rather than the two amino acid differences mentioned above.[3]
[edit] History
The search for the gene was initially started as a result of the investigations into the KE (or K) family. Certain members of this family suffered from an inherited speech and language disorder and living members stretched back three generations. Closer inspection of the family revealed the disorder to be autosomal dominant.
A scan was performed of the genome of the affected and some of the unaffected family members. This initial scan limited the affected region to a spot on chromosome 7, which the team called "SPCH1". Sequencing of this region was done with the aid of bacterial artificial chromosome clones. At this point, another individual was located who had a similar disorder but was unrelated to the family. The genome of this individual was mapped and it was discovered that there was a break in chromosome 7.
Further investigation discovered a point mutation in this chromosome. Sequenced and analysed, this is now referred to as the FOXP2 gene.
[edit] See also
- FOX proteins
- FOXP1
- dyspraxia
- Broca's area
- Evolution of Homo sapiens
- Human evolutionary genetics
- Human Genome Project
- Chimpanzee genome project
- Origin of language
- Vocal learning
[edit] References
- ^ Lai C, Fisher S, Hurst J, Levy E, Hodgson S, Fox M, Jeremiah S, Povey S, Jamison D, Green E, Vargha-Khadem F, Monaco A (2000). "The SPCH1 region on human 7q31: genomic characterization of the critical interval and localization of translocations associated with speech and language disorder". Am J Hum Genet 67 (2): 357–68. doi: . PMID 10880297.
- ^ Vargha-Khadem F, Gadian DG, Copp A, Mishkin M (2005). "FOXP2 and the neuroanatomy of speech and language". Nature Reviews Neuroscience 6: 131–137. doi: . PMID 15685218.
- ^ a b c Sean B Carroll (July 2005). "Evolution at Two Levels: On Genes and Form". PLoS Biol. 3 (7): e245. doi: . PMID 16000021. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1174822.
- ^ Scherer SW, et al. (2003). "Human chromosome 7: DNA sequence and biology". Science 300: 767–772. doi: . PMID 12690205.
- ^ Newbury DF, Bonora E, Lamb JA, Fisher SE, Lai CS, Baird G, Jannoun L, Slonims V, Stott CM, Merricks MJ, Bolton PF, Bailey AJ, Monaco AP (2002). "FOXP2 is not a major susceptibility gene for autism or specific language impairment". Am J Hum Genet 70 (5): 1318–27. doi: . PMID 11894222.
- ^ Shu W, Cho JY, Jiang Y, Zhang M, Weisz D, Elder GA, Schmeidler J, De Gasperi R, Sosa MA, Rabidou D, Santucci AC, Perl D, Morrisey E, Buxbaum JD (2005). "Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene". Proc Natl Acad Sci U S A 102 (27): 9643–8. doi: . PMID 15983371.
- ^ Shu W, Lu MM, Zhang Y, Tucker PW, Zhou D, Morrisey EE (2007). "Foxp2 and Foxp1 cooperatively regulate lung and esophagus development". Development 134 (10): 1991–2000. doi: . PMID 17428829.
- ^ Sebastian Haesler, Christelle Rochefort, Benjamin Georgi, Pawel Licznerski, Pavel Osten, Constance Scharff (2007). "Incomplete and Inaccurate Vocal Imitation after Knockdown of FoxP2 in Songbird Basal Ganglia Nucleus Area X". PLoS Biology 5 (12): e321. doi: .
- ^ Haesler S, Wada K, Nshdejan A,Morrisey EE, Lints T, Jarvis ED, Scharff C (2004). "FoxP2 expression in avian vocal learners and non-learners". Journal of Neuroscience 24 (24): 3164–3175. doi: . PMID 15056696.
- ^ I. Teramitsu and S. A. White (2006). "FoxP2 regulation during undirected singing in adult songbirds". Journal of Neuroscience 26 (28): 7390–7294. doi: . PMID 16837586.
- ^ Li, Gang; Wang, Jinhong; Rossiter, Stephen J.; Jones, Gareth; Zhang, Shuyi (2007), Accelerated FoxP2 Evolution in Echolocating Bats, doi:, http://www.plosone.org/article/fetchArticle.action?articleURI=info:doi/10.1371/journal.pone.0000900, retrieved on 2007-09-19
- ^ a b Webb DM, Zhang J (2005). "FoxP2 in song-learning birds and vocal-learning mammals". J Hered. 96 (3): 212–6. doi: . PMID 15618302.
- ^ a b Scharff C, Haesler S (2004). "An evolutionary perspective on FoxP2: strictly for the birds?". Curr Opin Neurobiol 15 (6): 694–703. doi: . PMID 16266802.
- ^ a b Enard W, Przeworski M, Fisher S, Lai C, Wiebe V, Kitano T, Monaco A, Pääbo S (2002). "Molecular evolution of FOXP2, a gene involved in speech and language". Nature 418 (6900): 869–72. doi: . PMID 12192408.
- ^ Teramitsu I, Kudo LC, London SE, Geschwind DH, White SA (2004). "Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction". J Neurosci. 24 (13): 3152–63. doi: . PMID 15056695.
- ^ Haesler S, Wada K, Nshdejan A,Morrisey EE, Lints T, Jarvis ED, Scharff C (2004). "FoxP2 expression in avian vocal learners and non-learners". J Neurosci. 24 (24): 3164–75. doi: . PMID 15056696.
- ^ Johannes Krause, Carles Lalueza-Fox, Ludovic Orlando, Wolfgang Enard, Richard E. Green, Hernán A. Burbano, Jean-Jacques Hublin, Catherine Hänni, Javier Fortea, Marco de la Rasilla, Jaume Bertranpetit, Antonio Rosas and Svante Pääbo (2007-11-06). "The Derived FOXP2 Variant of Modern Humans Was Shared with Neandertals". Current Biology 17 (21): 1908–1912. doi: . News article:
[edit] External links
- The FOXP2 gene in neurological development at University of Oxford
- Essay on FOXP2 and the Evolution of Language
|
|