Cold fusion
From Wikipedia, the free encyclopedia
The neutrality of this article is disputed. Please see the discussion on the talk page. Please do not remove this message until the dispute is resolved. (October 2008) |
Cold fusion (sometimes referred to as low energy nuclear reaction (LENR) studies or condensed matter nuclear science.[1]) refers to a postulated nuclear fusion process of unknown mechanism offered to explain a group of disputed experimental results first reported by electrochemists Martin Fleischmann and Stanley Pons.
Cold fusion, under this definition, was first announced on March 23, 1989 when Martin Fleischmann and Stanley Pons reported producing nuclear fusion in a tabletop experiment involving electrolysis of heavy water on a palladium (Pd) electrode.[2] They reported anomalous heat production ("excess heat") of a magnitude they asserted would defy explanation except in terms of nuclear processes.[3] They further reported measuring small amounts of nuclear reaction byproducts, including neutrons and tritium.[4] These reports raised hopes of a cheap and abundant source of energy.[5]
Enthusiasm turned to skepticism as a long series of failed replication attempts were weighed in view of several theoretical reasons cold fusion should not be possible, the discovery of possible sources of experimental error, and finally the discovery that Fleischmann and Pons had not actually detected nuclear reaction byproducts.[6] By late 1989, most scientists considered cold fusion claims dead,[7] and cold fusion subsequently gained a reputation as pathological science.[8] However, some researchers continue to investigate cold fusion and publish their findings at conferences, in books, and scientific journals.[7][9][10]
There have been few mainstream reviews of the field since 1990. In 1989, the majority of a review panel organized by the US Department of Energy (DOE) had found that the evidence for the discovery of a new nuclear process was not persuasive. A second DOE review, convened in 2004 to look at new research, reached conclusions that were similar to those of the 1989 panel.[11]
Contents |
[edit] History
[edit] Early work
The ability of palladium to absorb hydrogen was recognized as early as the nineteenth century by Thomas Graham.[12] In the late nineteen-twenties, two Austrian born scientists, Friedrich Paneth and Kurt Peters, originally reported the transformation of hydrogen into helium by spontaneous nuclear catalysis when hydrogen was absorbed by finely divided palladium at room temperature. However, the authors later retracted that report, acknowledging that the helium they measured was due to background from the air.[12][13]
In 1927, Swedish scientist J. Tandberg stated that he had fused hydrogen into helium in an electrolytic cell with palladium electrodes.[12] On the basis of his work, he applied for a Swedish patent for "a method to produce helium and useful reaction energy". After deuterium was discovered in 1932, Tandberg continued his experiments with heavy water. Due to Paneth and Peters' retraction, Tandberg's patent application was eventually denied.[12]
The term "cold fusion" was coined by E. Paul Palmer of Brigham Young University in 1986 in an investigation of "geo-fusion", or the possible existence of fusion in a planetary core.[14]
[edit] Fleischmann-Pons announcement
Martin Fleischmann of the University of Southampton and Stanley Pons of the University of Utah hypothesized that the high compression ratio and mobility of deuterium that could be achieved within palladium metal using electrolysis might result in nuclear fusion.[15] To investigate, they conducted electrolysis experiments using a palladium cathode and heavy water within a calorimeter, an insulated vessel designed to measure process heat. Current was applied continuously for many weeks, with the heavy water being renewed at intervals.[15] Some deuterium was thought to be accumulating within the cathode, but most was allowed to bubble out of the cell, joining oxygen produced at the anode.[16] For most of the time, the power input to the cell was equal to the calculated power leaving the cell within measurement accuracy, and the cell temperature was stable at around 30 °C. But then, at some point (and in some of the experiments), the temperature rose suddenly to about 50 °C without changes in the input power. These high temperature phases would last for two days or more and would repeat several times in any given experiment once they had occurred. The calculated power leaving the cell was significantly higher than the input power during these high temperature phases. Eventually the high temperature phases would no longer occur within a particular cell.[16]
In 1988, Fleischmann and Pons applied to the United States Department of Energy for funding towards a larger series of experiments. Up to this point they had been funding their experiments using a small device built with $100,000 out-of-pocket.[17] The grant proposal was turned over for peer review, and one of the reviewers was Steven E. Jones of Brigham Young University.[17] Jones had worked for some time on muon-catalyzed fusion, a known method of inducing nuclear fusion without high temperatures, and had written an article on the topic entitled "Cold nuclear fusion" that had been published in Scientific American in July 1987. Fleischmann and Pons and co-workers met with Jones and co-workers on occasion in Utah to share research and techniques. During this time, Fleischmann and Pons described their experiments as generating considerable "excess energy", in the sense that it could not be explained by chemical reactions alone.[18] They felt that such a discovery could bear significant commercial value and would be entitled to patent protection. Jones, however, was measuring neutron flux, which was not of commercial interest.[17] In order to avoid problems in the future, the teams appeared to agree to simultaneously publish their results, although their accounts of their March 6 meeting differ.[19]
In mid-March 1989, both research teams were ready to publish their findings, and Fleischmann and Jones had agreed to meet at an airport on March 24 to send their papers to Nature via FedEx.[19] Fleischmann and Pons, however, broke their apparent agreement, submitting their paper to the Journal of Electroanalytical Chemistry on March 11, and disclosing their work via a press conference on March 23.[17] Jones, upset, faxed in his paper to Nature after the press conference.[19]
[edit] Reaction to the announcement
Fleischmann and Pons' announcement drew wide media attention.[20]
Scores of laboratories in the United States and abroad attempted to repeat the experiments.[21] A few reported success, many others failure.[21] Even those reporting success had difficulty reproducing Fleischmann and Pons' results.[22] One of the more prominent reports of success came from a group at the Georgia Institute of Technology, which observed neutron production.[23] The Georgia Tech group later retracted their announcement.[24] Another team, headed by Robert Huggins at Stanford University also reported early success,[25] but this too was refuted.[7] For weeks, competing claims, counterclaims and suggested explanations kept what was referred to as "cold fusion" or "fusion confusion" in the news.[26]
In May 1989, the American Physical Society held a session on cold fusion, at which were heard many reports of experiments that failed to produce evidence of cold fusion. At the end of the session, eight of the nine leading speakers stated they considered the initial Fleischmann and Pons' claim dead.[21]
In April 1989, Fleischmann and Pons published a "preliminary note" in the Journal of Electroanalytical Chemistry.[15] This paper notably showed a gamma peak without its corresponding Compton edge, which indicated they had made a mistake in claiming evidence of fusion byproducts.[27][28] The preliminary note was followed up a year later with a much longer paper that went into details of calorimetry but did not include any nuclear measurements.[18]
In July and November 1989, Nature published papers critical of cold fusion claims.[29][30]
Nevertheless, Fleischmann and Pons and a number of other researchers who found positive results remained convinced of their findings.[21] In August 1989, the state of Utah invested $4.5 million to create the National Cold Fusion Institute.[31]
The United States Department of Energy organized a special panel to review cold fusion theory and research.[32] The panel issued its report in November 1989, concluding that results as of that date did not present convincing evidence that useful sources of energy would result from phenomena attributed to cold fusion.[33] The panel noted the inconsistency of reports of excess heat and the greater inconsistency of reports of nuclear reaction byproducts. Nuclear fusion of the type postulated would be inconsistent with current understanding and would require the invention of an entirely new nuclear process. The panel was against special funding for cold fusion research, but supported modest funding of "focused experiments within the general funding system."[34]
In the ensuing years, several books came out critical of cold fusion research methods and the conduct of cold fusion researchers.[35]
[edit] Further developments
Cold fusion claims were, and still are, considered extraordinary.[36] In view of the theoretical issues alone, most scientists would require extraordinarily conclusive data to be convinced that cold fusion has been discovered.[37] After the fiasco following the Pons and Fleischmann announcement, most scientists became dismissive of new experimental claims.[38]
Nevertheless, there were positive results that kept some researchers interested and got new researchers involved.[39] In September 1990, Fritz Will, Director of the National Cold Fusion Institute, compiled a list of 92 groups of researchers from 10 different countries that had reported excess heat, 3H, 4He, neutrons or other nuclear effects.[40]
Fleischmann and Pons relocated their laboratory to France under a grant from the Toyota Motor Corporation. The laboratory, IMRA, was closed in 1998 after spending £12 million on cold fusion work.[41]
Between 1992 and 1997, Japan's Ministry of International Trade and Industry sponsored a "New Hydrogen Energy Program" of US$20 million to research cold fusion. Announcing the end of the program in 1997, Hideo Ikegami stated "We couldn't achieve what was first claimed in terms of cold fusion." He added, "We can't find any reason to propose more money for the coming year or for the future."[42]
In 1994, David Goodstein described cold fusion as "a pariah field, cast out by the scientific establishment. Between cold fusion and respectable science there is virtually no communication at all. Cold fusion papers are almost never published in refereed scientific journals, with the result that those works don't receive the normal critical scrutiny that science requires. On the other hand, because the Cold-Fusioners see themselves as a community under siege, there is little internal criticism. Experiments and theories tend to be accepted at face value, for fear of providing even more fuel for external critics, if anyone outside the group was bothering to listen. In these circumstances, crackpots flourish, making matters worse for those who believe that there is serious science going on here."[43]
In some cases, cold fusion researchers contend that cold fusion research is being suppressed.[44] They complained there was virtually no possibility of obtaining funding for cold fusion research in the United States, and no possibility of getting published.[45] University researchers were unwilling to investigate cold fusion because they would be ridiculed by their colleagues.[46] In a biography by Jagdish Mehra et al. it is mentioned that to the shock of most physicists, the Nobel Laureate Julian Schwinger declared himself a supporter of cold fusion and tried to publish a paper on it on the American Physical Society's journal; when it was roundly rejected, in a manner that he considered deeply insulting, he resigned from that body in protest.[47]
To provide a forum for researchers to share their results, the first International Conference on Cold Fusion was held in 1990. The conference, recently renamed the International Conference on Condensed Matter Nuclear Science, is held every 12 to 18 months in various countries around the world. The periodicals Fusion Facts, Cold Fusion Magazine, Infinite Energy Magazine, and New Energy Times were established in the 1990s to cover developments in cold fusion and related new energy sciences. In 2004 The International Society for Condensed Matter Nuclear Science (ISCMNS) was formed "To promote the understanding, development and application of Condensed Matter Nuclear Science for the benefit of the public."
In the 1990s, India stopped its research in cold fusion due to the lack of consensus among mainstream scientists and the US denounciation of it.[48]
In February 2002, the U.S. Navy revealed that its researchers had been quietly studying cold fusion continually since 1989. Researchers at their Space and Naval Warfare Systems Center in San Diego, California released a two-volume report, entitled "Thermal and nuclear aspects of the Pd/D2O system," with a plea for proper funding.[49]
In 2004, at the request of cold fusion advocates, the DOE organized a second review of the field. Cold fusion researchers presented a review document stating that the observation of excess heat has been reproduced, that it can be reproduced at will under the proper conditions, and that many of the reasons for failure to reproduce it have been discovered.[50] 18 reviewers in total examined the written and oral testimony given by cold fusion researchers. On the question of excess heat, the reviewers' opinions ranged from "evidence of excess heat is compelling" to "there is no convincing evidence that excess power is produced when integrated over the life of an experiment". The report states the reviewers were split approximately evenly on this topic. On the question of evidence for nuclear fusion, the report states:
“ | Two-thirds of the reviewers...did not feel the evidence was conclusive for low energy nuclear reactions, one found the evidence convincing, and the remainder indicated they were somewhat convinced. Many reviewers noted that poor experiment design, documentation, background control and other similar issues hampered the understanding and interpretation of the results presented. | ” |
On the question of further research, the report reads:[51]
“ | The nearly unanimous opinion of the reviewers was that funding agencies should entertain individual, well-designed proposals for experiments that address specific scientific issues relevant to the question of whether or not there is anomalous energy production in Pd/D systems, or whether or not D-D fusion reactions occur at energies on the order of a few eV. These proposals should meet accepted scientific standards, and undergo the rigors of peer review. No reviewer recommended a focused federally funded program for low energy nuclear reactions. | ” |
Thirteen papers were presented at the "Cold Fusion" session of the March 2006 American Physical Society (APS) meeting in Baltimore.[52] In 2007, the American Chemical Society's (ACS) held an "invited symposium" on cold fusion and low-energy nuclear reactions.[53] Cold fusion reports have been published in Naturwissenschaften, Japanese Journal of Applied Physics, European Physical Journal A, European Physical Journal C, International Journal of Hydrogen Energy, Journal of Solid State Phenomena, Journal of Electroanalytical Chemistry, and Journal of Fusion Energy.[54]
Cold fusion researchers have described possible cold fusion mechanisms, but they have not received mainstream acceptance.[55] Physics Today said, in 2005, that new reports of excess heat and other cold fusion effects were still no more convincing than 15 years ago.[56] 20 years later, in 2009, cold fusion researchers complain that the flaws in the original announcement still cause the field to be marginalized and to suffer a chronical lack of funding.[57] Frank Close claims that a problem plaguing the original announcement is still happening: results from studies are still not being independently verified, and that inexplicable phenomena encountered in the last twenty years are being labeled as "cold fusion" even if they aren't, in order to attract attention from journalists.[57] A number of researchers keep researching and publishing in the field, working under the name of low-energy nuclear reactions, or LENR, in order to avoid the negative connotations of the "cold fusion" label.[57][58][59]
Research in India started again in 2008 in several centers like the Bhabha Atomic Research Centre thanks to the pressure of influential Indian scientists; the National Institute of Advanced Studies has also recommended the Indian government to revive this research.[48]
[edit] 2009 reports
On 22-25 March 2009, the American Chemical Society held a four-day symposium on "New Energy Technology", in conjunction with the 20th anniversary of the announcement of cold fusion. At the conference, researchers with the U.S. Navy's Space and Naval Warfare Systems Center (SPAWAR) reported detection of energetic neutrons in a palladium-deuterium co-deposition cell using CR-39,[60] a result previously published in Die Naturwissenschaften.[61] Neutrons are indicative of nuclear reactions.[62]
[edit] Experimental Details
A cold fusion experiment usually includes:
- a metal, such as palladium or nickel, in bulk, thin films or powder;
- deuterium and/or hydrogen, in the form of water, gas or plasma; and
- an excitation in the form of electricity, magnetism, temperature, pressure, laser beam(s), or of acoustic waves.[63]
Electrolysis cells can be either open cell or closed cell. In open cell systems, the electrolyis products, which are gaseous, are allowed to leave the cell. In closed cell experiments, the products are captured, for example by catalytically recombining the products in a separate part of the experimental system. These experiments generally strive for a steady state condition, with the electrolyte being replaced periodically. There are also "heat after death" experiments, where the evolution of heat is monitored after the electric current is turned off.
[edit] Excess heat observations
An excess heat observation is based on an energy balance. Various sources of energy input and output are continuously measured. Under normal condition, the energy input can be matched to the energy output to within experimental error. In experiments such as those run by Fleischmann and Pons, a cell operating steadily at one temperature transitions to operating at a higher temperature with no increase in applied current.[64] At the higher temperature, the energy balance shows an unaccounted term. In the Fleischmann and Pons experiments, the rate of excess heat generation was in the range of 10-20% of total input. The high temperature condition would last for an extended period, making the total excess heat disproportionate to what might be obtained by ordinary chemical reaction of the material contained within the cell at any one time. These high temperature phases did not last indefinitely and did not occur in every experiment, but in those experiments where they did occur, they would usually reoccur several times.[65][66] Many others have reported similar results.[67][68][69][70][71][72]
A 2007 review determined that more than 10 groups world wide reported measurements of excess heat in 1/3 of their experiments using electrolysis of heavy water in open and/or closed electrochemical cells, or deuterium gas loading onto Pd powders under pressure. Most of the research groups reported occasionally seeing 50-200% excess heat for periods lasting hours or days.[66]
In 1993, Fleischmann reported "heat-after-death" experiments: he observed the continuing generation of excess heat after the electric current supplied to the electrolytic cell was turned off.[73] Similar observations have been reported by others as well.[74][75]
[edit] Reports of nuclear products in association with excess heat
In association with excess heat, researchers have reported observing gamma rays, neutrons, and tritium (3H) production.[76],[77] Although these reports do not measure quantities commensurate with a rate of deuterium fusion that would account for the excess heat, the quantities were reported to be in excess of background levels.
Considerable attention has been given to measuring 4He production.[78] In the report presented to the DOE in 2004, 4He was detected in five out of sixteen cases where electrolytic cells were producing excess heat, although the amounts detected were very close to background levels and contamination by trace amounts of helium normally present in the air is difficult to avoid.[79]
[edit] Evidence for nuclear transmutations
There have been reports that small amounts of copper and other metals can appear within Pd electrodes used in cold fusion experiments.[80] Iwamura et al. report transmuting Cs to Pr and Sr to Mo, with the mass number increasing by 8, and the atomic number by 4 in either case.[81]. Cs or Sr was applied to the surface of a Pd complex consisting of a thin Pd layer, alternating CaO and Pd layers, and bulk Pd. Deuterium was diffused through this complex. The surface was analyzed periodically with X-ray photoelectron spectroscopy and at the end of the experiment with glow discharge mass spectrometry.[81] Production of such heavy nuclei is so unexpected from current understanding of nuclear reactions that extraordinary experimental proof will be needed to convince the scientific community of these results.[82]
[edit] Non-nuclear explanations for excess heat
The calculation of excess heat in electrochemical cells involves certain assumptions.[83] Errors in these assumptions have been offered as non-nuclear explanations for excess heat.
One assumption made by Fleishmann and Pons is the efficiency of electrolysis is nearly 100%, meaning they assumed nearly all the electricity applied to the cell resulted in electrolysis of water, with negligible resistive heating and substantially all the electrolysis product leaving the cell unchanged.[84] This assumption gives the amount of energy expended converting liquid D2O into gaseous D2 and O2.[85]
The efficiency of electrolysis will be less than one if hydrogen and oxygen recombine to a significant extent within the calorimeter. Several researchers have described potential mechanisms by which this process could occur and thereby account for excess heat in electrolyis experiments.[86][87][88]
Another assumption is that heat loss from the calorimeter maintains the same relationship with measured temperature as found when calibrating the calorimeter.[89] This assumption ceases to be accurate if the temperature distribution within the cell becomes significantly altered from the condition under which calibration measurements were made.[90] This can happen, for example, if fluid circulation within the cell becomes significantly altered.[91][92] Recombination of hydrogen and oxygen within the calorimeter would also alter the heat distribution and invalidate the calibration.[88][93][94]
[edit] Discussion
[edit] Lack of accepted explanation using conventional physics
Postulating cold fusion to explain experimental results raises at least three separate theoretical problems.[95]
[edit] 1.- The probability of reaction
Because nuclei are all positively charged, they strongly repel one another.[96] Normally, very high energies are required to overcome this repulsion.[97] Extrapolating from known rates at high energies, the rate at room temperature would be 50 orders of magnitude lower than needed to account for the reported excess heat.[98]
[edit] 2.- The branching ratio
Fusion is a two-step process.[99] In the case of deuterium fusion, the first step is combination to form a high energy intermediary:
- D + D → 4He + 24 MeV
In high energy experiments, this intermediary has been observed to quickly decay through three pathways:[100]
- n + 3He + 3.3 MeV (50%)
- p + 3H + 4.0 MeV (50%)
- 4He + γ + 24 MeV (10-6)
The first two pathways are equally probable, and if one watt of nuclear power were produced, the neutron and tritium production would be easy to measure.[101] Based on attempts to detect neutrons and tritium (3H), the actual rates of the first two pathways are at least five orders of magnitude too low, meaning the branching probabilities given above would have to be completely reversed to strongly favor the third pathway.[102]
[edit] 3.- Conversion of γ-rays to heat
The γ-rays of the 4He pathway are not observed. This type of radiation is not stopped by electrode or electrolyte materials, making it necessary to postulate that the 24 MeV excess energy is transferred in the form of heat into the host metal lattice prior to the intermediary's decay.[103] The speed of the decay process together with the inter-atomic spacing in a metallic crystal makes such a transfer inexplicable in terms of conventional understandings of momentum and energy transfer.[104]
[edit] Proposed explanations
This section requires expansion. |
Numerous possible theoretical interpretations of the experimental results have been proposed.[105] As of 2002, they were all ad hoc explanations, and no coherent explanation for the results has been given.[105] The experiments that back these theories have been of low quality or non reproducible, and more careful experiments have given negative results.[105] As of 2002, the explanations have failed to convince the mainstream scientific community.[105] Since cold fusion is such an extraordinary claim, most scientists won't be convinced until is found either high-quality convincing data, or a compelling theoretical explanation.[106]
[edit] Non-nuclear explanations
Some groups testing cold fusion concluded that the positive results could be explained by alternative explanations that had nothing to do with cold fusion.[107] Some explain the phenomena as purely electrochemical activity, which is inconsistent with evidence of fusion products in some experiments.[108] According to Heeter, "Specific attempts to explain cold fusion as something other than nuclear fusion require similar miracles with equally weak evidence."[109]
[edit] Vacuum vs condensed matter
An alternative explanation has been offered treating the space between nuclei as condensed matter instead of vacuum. This way the energy released from the fusion could be effectively transmitted in the proposed time. However, Goodstein states that the reaction times in the lattice are too slow, and the energies involved are much higher than those in cold fusion (KeV versus Mev).[110] Giuliano Preparata has proposed a theory involving the application of quantum electrodynamics to condensed matter.[111]
[edit] Methods that rely on the particular characteristics of lattice
There are several theories of how nuclear fusion could happen, all depending on using a regular lattice of electrons and atoms. This lattice can be made of palladium or of other materials with certain uique characteristics. These theories include, for example:[112]
- reduction of the Coulomb barrier by electrons being concentrated between the nuclei,
- conversion of deuterium into a wave structure that ignores the Coulomb barrier,
- creation or release of neutrons within the structure, which add to nuclei that are present,
- creation of clusters of deuterons that interact as units,
- involvement of phonons to concentrate energy at the reaction site and carry away the released energy,
- models showing that the Coulomb barrier is not as high as previous thought if certain conditions are present.
[edit] See also
[edit] References
- ^ Biberian 2007,Hagelstein et al. 2004
- ^ Voss 1999
- ^ Fleischmann & Pons 1989, p. 301 ("It is inconceivable that this [amount of heat] could be due to anything but nuclear processes.")
- ^ Fleischmann & Pons 1989, p. 301 ("We realise that the results reported here raise more questions than they provide answers . . .")
- ^ Browne 1989, para. 1
- ^ Browne 1989,Close 1992, Huizenga 1993,Taubes 1993
- ^ a b c Malcolm W. Browne (1989-05-03). "Physicists Debunk Claim Of a New Kind of Fusion". The New York Times: pp. A1, A22. http://query.nytimes.com/gst/fullpage.html?res=950DE2D71539F930A35756C0A96F948260&pagewanted=all.
- ^ "US will give cold fusion a second look". New York Times. http://query.nytimes.com/gst/fullpage.html?res=9C01E0DC1530F936A15750C0A9629C8B63. Retrieved on 2009-02-08.
- ^ Voss 1999,Platt 1998,Goodstein 1994,Van Noorden 2007,Beaudette 2002,Feder 2005,Hutchinson 2006,Kruglinksi 2006,Adam 2005
- ^ William J. Broad (1989-10-31). "Despite Scorn, Team in Utah Still Seeks Cold-Fusion Clues". The New York Times: pp. C1. http://query.nytimes.com/gst/fullpage.html?res=950DE6DA1331F932A05753C1A96F948260&pagewanted=all.
- ^ Choi 2005,Feder 2005,US DOE 2004
- ^ a b c d US DOE 1989, p. 7
- ^ Paneth and Peters 1926
- ^ Kowalski 2004, II.A2
- ^ a b c Fleischmann & Pons 1989, p. 301
- ^ a b Fleischmann et al. 1990
- ^ a b c d Crease & Samios 1989, p. V1
- ^ a b Fleischmann et al. 1990, p. 293
- ^ a b c Lewenstein 1994, p. 8
- ^ For example, in 1989, the Economist editorialized that the cold fusion "affair" was "exactly what science should be about." Michael Brooks, "13 Things That Don't Make Sense" (ISBN 978-1-60751-666-8), p. 67 (New York:Doubleday, 2008), citing J. (Jerrold) K. Footlick, "Truth and Consequences: how colleges and universities meet public crises" (ISBN 9780897749701), p. 51 (Phoenix:Oryx Press, 1997).
- ^ a b c d Browne 1989
- ^ Schaffer 1999, p. 1
- ^ Broad 1989
- ^ Wilford 1989
- ^ Broad, William J. 19 April 1989. Stanford Reports Success, The New York Times.
- ^ Bowen 1989
- ^ Tate 1989, p. 1
- ^ Platt 1998
- ^ Gai et al. 1989, pp. 29-34
- ^ Williams et al. 1989, pp. 375-384
- ^ Joyce 1990
- ^ US DOE 1989, p. 39
- ^ US DOE 1989, p. 36
- ^ US DOE 1989, p. 37
- ^ Taubes 1993, Close 1992, Huizenga 1993, Park 2000}
- ^ Schaffer 1999, p. 3
- ^ Schaffer 1999, p. 3, Adam 2005 - ("Extraordinary claims . . . demand extraordinary proof")
- ^ Schaffer and Morrison 1999, p. 3 ("You mean it's not dead?" – recounting a typical reaction to hearing a cold fusion conference was held recently)
- ^ Adam 2005 - ("Advocates insist that there is just too much evidence of unusual effects in the thousands of experiments since Pons and Fleischmann to be ignored")
- ^ Mallove 1991, p. 246-248
- ^ Voss 1999
- ^ Pollack 1997, p. C4
- ^ Goodstein 1994
- ^ Josephson 2004
- ^ Feder 2004, p. 27
- ^ Adam 2005 (comment attributed to George Miley of the University of Illinois)
- ^ Jagdish Mehra, K. A. Milton, Julian Seymour Schwinger (2000). Oxford University Press. ed. Climbing the Mountain: The Scientific Biography of Julian Schwinger (illustrated ed.). p. 550. ISBN 0198506589. http://books.google.com/books?id=9SmZSN8F164C&pg=PA550&vq=resigned+american+physical+society+cold+fusion&dq=Julian+Schwinger+cold+fusion&hl=es&source=gbs_search_s&cad=0.
- ^ a b Jayaraman 2008
- ^ Mullins 2004
- ^ Hagelstein et al. 2004, p. 3, 14
- ^ US DOE 2004
- ^ Chubb et al. 2006, Adam 2005 ("Anyone can deliver a paper. We defend the openness of science" - Bob Parks of APS, explaining that hosting the meeting does not show a softening of scepticism)
- ^ Van Noorden 2007, para. 2
- ^ Di Giulio 2002
- ^ Biberian 2007
- ^ Feder 2005
- ^ a b c "Cold fusion debate heats up again". BBC. 2009-03-23. http://news.bbc.co.uk/2/hi/science/nature/7959183.stm.
- ^ "March 23, 1989: Cold Fusion Gets Cold Shoulder". Wired. 2009-03-23. http://www.wired.com/science/discoveries/news/2009/03/dayintech_0323.
- ^ Shamoo 2003, p. 132-133
- ^ ACS Press Release 'Cold fusion' rebirth? New evidence for existence of controversial energy source
- ^ "Neutron tracks revive hopes for cold fusion". New Scientist. http://www.newscientist.com/article/dn16820-neutron-tracks-revive-hopes-for-cold-fusion.html. Retrieved on 2009-03-24.
- ^ "Scientists in possible cold fusion breakthrough". AFP. http://www.google.com/hostednews/afp/article/ALeqM5j2QobOQnlULUZ7oalSRUVjnlHjng. Retrieved on 2009-03-24.
- ^ Storms 2007, p. 144-150
- ^ Fleischmann 1990
- ^ US DOE 2004, p. 3
- ^ a b Hubler 2007
- ^ Oriani et al. 1990, pp. 652-662, cited by Storms 2007, p. 61
- ^ Bush et al. 1991, cited by Biberian 2007
- ^ e.g. Storms 1993, Hagelstein et al. 2004
- ^ Miles et al. 1993
- ^ e.g. Arata & Zhang 1998, Hagelstein et al. 2004
- ^ Gozzi 1998, cited by Biberian 2007
- ^ Fleischmann 1993
- ^ Mengoli 1998
- ^ Szpak 2004
- ^ Storms 2007
- ^ Mosier-Boss et al. 2008
- ^ Hagelstein et al. 2004
- ^ Hagelstein et al. 2004, Schaffer 1999, p. 2
- ^ Storms 2007, p. 93-95
- ^ a b Iwamura, Sakano & Itoh 2002, pp. 4642-4650
- ^ Schaffer 1999, p. 2
- ^ Biberian 2007 - (Input power is calculated by multiplying current and voltage, and output power is deduced from the measurement of the temperature of the cell and that of the bath")
- ^ Fleishmann 1990
- ^ Fleishmann 1990, Appendix
- ^ Shkedi et al. 1995
- ^ Jones et al. 1995, p. 1
- ^ a b Shanahan 2002
- ^ Fleishmann 1990,
- ^ Biberian 2007 - ("Almost all the heat is dissipated by radiation and follows the temperature fourth power law. The cell is calibrated . . .")
- ^ Browne 1989, para. 16
- ^ Wilson 1992
- ^ Shanahan 2005
- ^ Shanahan 2006
- ^ Schaffer 1999, p. 1, Scaramuzzi 2000, p. 4 ("It has been said . . . three 'miracles' are necessary")
- ^ Schaffer 1999, p. 1
- ^ Schaffer and Morrison 1999, p. 1,3
- ^ Scaramuzzi 2000, p. 4, Goodstein 1994, Huizenga 1993 page viii "Enhancing the probability of a nuclear reaction by 50 orders of magnitude (...) via the chemical environment of a metallic lattice, contradicted the very foundation of nuclear science"
- ^ Schaffer 1999, p. 1, Scaramuzzi 2000, p. 4, Goodstein 1994
- ^ Schaffer 1999, p. 2, Scaramuzzi 2000, p. 4
- ^ Schaffer 1999, p. 2
- ^ Schaffer 1999, p. 2, Scaramuzzi 2000, p. 4 , Goodstein 1994 (explaining Pons and Fleischmann would both be dead if they had produced neutrons in proportion to their measurements of excess heat)
- ^ Schaffer 1999, p. 2, Scaramuzzi 2000, p. 4
- ^ Goodstein 1994, Scaramuzzi 2000, p. 4
- ^ a b c d Gregory Neil Derry (2002). Princeton University Press. ed. What Science Is and How It Works (reprint, illustrated ed.). pp. 179,180. ISBN 0691095507. http://books.google.com/books?id=H7gjz-b7S9IC&pg=PA179&dq=cold+fusion+explanation.
- ^ Heeter 1999, p. 5
- ^ Alexander Bird (1998). Routledge. ed. Philosophy of Science: Alexander Bird (illustrated, reprint ed.). pp. 261-262. ISBN 1857285042. http://books.google.com/books?id=czUjWnpAnUQC&pg=PA261&dq=cold+fusion+explanation.
- ^ Scaramuzzi 2000, p. 5
- ^ Heeter 1999, p. 5
- ^ Scaramuzzi 2000, p. 5
- ^ Scaramuzzi 2000, p. 5
- ^ Storms, Edmund (2006), New Energy Times, ed., Cold Fusion for Dummies
[edit] Bibliography
- Adam, David (24 March 2005), Rusbringer, Alan, ed., "In from the cold", The Guardian, http://education.guardian.co.uk/higher/research/story/0,9865,1444306,00.html, retrieved on 2008-05-25
- Anderson, Mark (August 2007), "Cold-Fusion Graybeards Keep the Research Coming", Wired Magazine, http://www.wired.com/science/discoveries/news/2007/08/cold_fusion, retrieved on 2008-05-25
- Arata, Yoshiaki; Zhang, Yue-Chang (1998), "Anomalous difference between reaction energies generated within D20-cell and H20 Cell", Japanese Journal of Applied Physics 37 (11A): L1274–L1276, doi:
- Beaudette, Charles G. (2002), Excess Heat & Why Cold Fusion Research Prevailed, New York: Oak Grove Press, ISBN 9-9678548-2-2
- Biberian, Jean-Paul (2007), "Condensed Matter Nuclear Science (Cold Fusion): An Update" (PDF), International Journal of Nuclear Energy Science and Technology 3 (1): 31–42, doi:, http://www.jeanpaulbiberian.net/Download/Paper%2056.pdf
- Bockris, John (2000), "Accountability and academic freedom: The battle concerning research on cold fusion at Texas A&M University", Accountability Res. 8: 103, doi:
- Bowen, Jerry (April 10, 1989), "Science: Nuclear Fusion", CBS Evening News, http://openweb.tvnews.vanderbilt.edu/1989-4/1989-04-10-CBS-7.html, retrieved on 2008-05-25
- Broad, William J. (April 14, 1989), "Georgia Tech Team Reports Flaw In Critical Experiment on Fusion", New York Times, http://query.nytimes.com/gst/fullpage.html?res=950DE7DE1130F937A25757C0A96F948260, retrieved on 2008-05-25
- Brooks, Michael (2008), 13 things that don't make sense, New York: Doubleday, ISBN 978-0-385-52068-3
- Britz, Dieter (2008), "Book review:The Science of Low Energy Nuclear Reaction", Journal of Scientific Exploration 21 (4): 801, ISSN 0892-3310, http://www.scientificexploration.org/jse/abstracts.php
- Browne, M. (May 3, 1989), "Physicists Debunk Claim Of a New Kind of Fusion", New York Times, http://partners.nytimes.com/library/national/science/050399sci-cold-fusion.html, retrieved on 2008-05-25
- Bush, Ben F.; Lagowski, J. J.; Miles, M. H.; Ostrom, Greg S. (1991), "Helium Production During the Electrolysis of D2O in Cold Fusion", Journal of Electroanalytical Chemistry 304: 271–278, doi:
- Cartwright, Jon (2009-03-23), Cold fusion: The Ghost of Free Energy, GroundReport, http://www.groundreport.com/Arts_and_Culture/The-ghost-of-free-energy, retrieved on 2009-03-24
- Charles, Dan (1992), "Fatal explosion closes cold fusion laboratory", New Scientist, ISSN 0262-4079, http://www.newscientist.com/article/mg13318030.600-fatal-explosion-closes-cold-fusion-laboratory-.html, retrieved on 2008-08-29
- Choi, Charles (2005), "Back to Square One", Scientific American, http://www.sciam.com/article.cfm?id=back-to-square-one, retrieved on 2008-11-25
- Chubb, Scott et al. (2006), Session W41: Cold Fusion, American Physical Society, http://meetings.aps.org/Meeting/MAR06/SessionIndex2/?SessionEventID=45597, retrieved on 2008-05-25
- Clarke, W. Brian; Bos, Stanley J.; Oliver, Brian M. (2003), "Production of 4He in D2-loaded palladium-carbon catalyst II", Fusion Science and Technology (American Nuclear Society) 43 (2): 250–255, ISSN 1536-1055, OCLC 47144540, http://cat.inist.fr/?aModele=afficheN&cpsidt=14591064, retrieved on 2008-08-31
- Close, Frank E. (1992), Too Hot to Handle: The Race for Cold Fusion (2 ed.), London: Penguin, ISBN 0-14-015926-6
- Crease, Robert; Samios, N. P. (1989), "Cold Fusion confusion", New York Times Magazine (September 24, 1989): 34-38, ISSN 0028-7822
- Di Giulio, M.; Filippoa, E.; Mannoa, D.; Nassisi, V. (May 2002), "Analysis of nuclear transmutations observed in D- and H-loaded Pd films", International Journal of Hydrogen Energy 27 (5): 527–531, doi: , ISSN 0360-3199
- Feder, Toni (2004), "DOE Warms to Cold Fusion", Physics Today 57 (4): 27–28, doi:, http://scitation.aip.org/journals/doc/PHTOAD-ft/vol_57/iss_4/27_1.shtml
- Feder, Toni (January 2005), "Cold Fusion Gets Chilly Encore", Physics Today 58: 31, doi:, http://scitation.aip.org/journals/doc/PHTOAD-ft/vol_58/iss_1/31_1.shtml
- Fleischmann, Martin; Pons, Stanley (1989), "Electrochemically induced nuclear fusion of deuterium", Journal of Electroanalytical Chemistry 261 (2A): 301–308, doi:
- Fleischmann, Martin; Pons, Stanley; Anderson, Mark W.; Li, Lian Jun; Hawkins, Marvin (1990), "Calorimetry of the palladium-deuterium-heavy water system", Journal of Electroanalytical Chemistry 287: 293–348, doi:
- Fleischmann, Martin; Pons, Stanley (1992), "Some Comments on The Paper 'Analysis of Experiments on The Calorimetry of LiOD-D2O Electrochemical Cells,' R.H. Wilson et al., Journal of Electroanalytical Chemistry, Vol. 332, (1992)", Journal of Electroanalytical Chemistry 332: 33, doi:
- Fleischmann, Martin (1993), "Calorimetry of the Pd-D2O system: from simplicity via complications to simplicity", Physics Letters A 176 (1-2): 118–129, doi:
- Fleischmann, Martin (2003), "Background to cold fusion: the genesis of a concept", Tenth International Conference on Cold Fusion, Cambridge, MA: World Scientific Publishing, ISBN 978-9812565648
- Gai, M.; Rugari, S. L.; France, R. H.; Lund, B. J.; Zhao, Z.; Davenport, A. J.; Isaacs, H. S.; Lynn, K. G. (1989), "Upper limits on neutron and big gamma-ray emission from cold fusion", Nature 340: 29–34, doi:
- Good II, W.R. (1996), "Comments on 'Calorimetry, excess heat, and Faraday efficiency in Ni-H2O electrolytic cells'", Fusion Technology 30 (1): 132–133, ISSN 0748-1896
- Goodstein, David (1994), "Whatever happened to cold fusion?", American Scholar (Phi Beta Kappa Society) 63 (4): 527–541, ISSN 0003-0937, http://www.its.caltech.edu/~dg/fusion_art.html, retrieved on 2008-05-25
- Gozzi, D.; Cellucci, F.; Cignini, P.L.; Gigli, G.; Tomellini, M. (30 September 1997), "X-ray, heat excess and 4He in the D:Pd system", Journal of Electroanalytical Chemistry (Elsevier) 435 (1-2): 113–136, doi:
- Hagelstein, Peter; Michael, McKubre; Nagel, David; Chubb, Talbot; Hekman, Randall (2004) (PDF), New Physical Effects in Metal Deuterides, Washington: US Department of Energy, http://web.archive.org/web/20070106185101/www.science.doe.gov/Sub/Newsroom/News_Releases/DOE-SC/2004/low_energy/Appendix_1.pdf (manuscript)
- Hubler, G. K. (5 August 2007), "Anomalous Effects in Hydrogen-Charged Palladium - A Review", Surface and Coatings Technology 201 (19-20): 8568–8573, doi:from SMMIB 2005, 14th International Conference on Surface Modification of Materials by Ion Beams
- Huizenga, John R. (1993), Cold Fusion: The Scientific Fiasco of the Century (2 ed.), Oxford and New York: Oxford University Press, ISBN 0-19-855817-1
- Hutchinson, Alex (January 8, 2006), "The Year in Science: Physics", Discover Magazine (online), ISSN 0274-7529, http://discovermagazine.com/2006/jan/physics, retrieved on 2008-06-20
- Iwamura, Yasuhiro; Sakano, Mitsuru; Itoh, Takehiko (2002), "Elemental Analysis of Pd Complexes: Effects of D2 Gas Permeation", Japanese Journal of Applied Physics 41 (7A): 4642–4650, doi:
- Jayaraman, K. S. (January 17, 2008), "Cold fusion hot again", Nature India, doi:, http://www.nature.com/nindia/2008/080117/full/nindia.2008.77.html, retrieved on 2008-12-07
- Jones, J. E.; Hansen, L. D.; Jones, S. E.; Shelton, D. S.; Thorne, J. M. (1995), "Faradaic efficiencies less than 100% during electrolysis of water can account for reports of excess heat in `cold fusion` cells", Journal of Physical Chemistry 99 (18): 6973–6979, doi:
- Josephson, Brian D. (2004), Pathological Disbelief, Lecture given at the Nobel Laureates’ meeting Lindau, June 30th., 2004
- Joyce, Christopher (16 June 1990), "Gunfight at the cold fusion corral", New Scientist (1721): 22, ISSN 0262-4079, http://www.newscientist.com/article/mg12617210.700-gunfight-at-the-cold-fusion-corral-.html, retrieved on 2009-10-01
- Kainthla, R.C. (September 1989), "Sporadic observation of the Fleischmann-Pons heat effect", Electrochimica Acta 34 (9): 1315–1318, doi:
- Kozima, Hideo (2006), The Science of the Cold Fusion phenomenon, New York: Elsevier Science, ISBN 0-08-045110-1
- Krivit, Steven B. (10 April 2008), "Low Energy Nuclear Reaction Research – Global Scenario" (PDF), Current Science 94 (7): 854–857, http://www.ias.ac.in/currsci/apr102008/854.pdf, retrieved on 2008-07-19
- Krivit, Steven (2008), "Low Energy Nuclear Reactions: The Emergence of Condensed Matter Nuclear Science", in Marwan, Jan and Krivit, Steven B., editors, Low energy nuclear reactions sourcebook, American Chemical Society/Oxford University Press, ISBN 978-0-8412-6966-8
- Kruglinksi, Susan (2006-03-03), "Whatever Happened To... Cold Fusion?", Discover Magazine, ISSN 0274-7529, http://discovermagazine.com/2006/mar/cold-fusion, retrieved on 2008-06-20
- Kowalski, Ludwik (2004), Jones’s manuscript on History of Cold Fusion at BYU, Upper Montclair, New Jersey: csam.montclair.edu, http://pages.csam.montclair.edu/~kowalski/cf/131history.html, retrieved on 2008-05-25
- Leggett, A.J. (1989), "Exact upper bound on barrier penetration probabilities in many-body systems: Application to ‘‘cold fusion’’", Phys. Rev. Lett. 63: 191–194, doi:
- Lewenstein, Bruce V. (1994) (PDF), Cornell cold fusion archive, collection n°4451, Division of Rare and Manuscript Collections, Cornell University Library, http://rmc.library.cornell.edu/EAD/pdf_guides/RMM04451.pdf, retrieved on 2008-05-25
- Lewis, N. S.; Barnes†, C. A.; Heben, M. J.; Kumar, A.; Lunt, S. R.; McManis, G. E.; Miskelly, S. R.; Penner, G. M.; et al. (1989), "Searches for low-temperature nuclear fusion of deuterium in palladium", Nature 340: 525-530
- Mallove, Eugene (1991), Fire from Ice: Searching for the Truth Behind the Cold Fusion Furor, London: Wiley, ISBN 0-471-53139-1
- Mengoli, G (1998), "Calorimetry close to the boiling temperature of the D2O/Pd electrolytic system", Journal of Electroanalytical Chemistry 444: 155–167, doi:
- McKubre, M.C.H (1994), "Isothermal Flow Calorimetric Investigations of the D/Pd and H/Pd Systems", Journal of Electroanalytical Chemistry 368: 55, doi:
- Miles, Melvin H.; Hollins, R. A.; Bush, Ben F.; Logowski, J. J.; Miles, R. E. (1993), "Correlation of excess power and helium production during D2O and H20 electrolysis using Palladium cathodes", Journal of Electroanalytical Chemistry 346 (1-2): 99–117, doi:
- Mizuno, Tadahiko (1996), "Analysis of Elements for Solid State Electrolyte in Deuterium Atmosphere during Applied Field" (PDF), J. New Energy 1 (2): 37, http://iccf9.global.tsinghua.edu.cn/lenr%20home%20page/acrobat/MizunoTanalysisof.pdf
- Mizuno, Tadahiko; Rothwell, Jed (translator) (1998) (PDF), Nuclear Transmutation: The Reality of Cold Fusion, Concord, New Hampshire: Infinite Energy Press, ISBN 1-892925-00-1, http://iccf9.global.tsinghua.edu.cn/LENR%20home%20page/acrobat/MizunoTnucleartra.pdf
- Mullins, Justin (September 2004), "Cold Fusion Back From the Dead", IEEE Spectrum 41: 22, doi:
- Mosier-Boss, Pamela A.; Szpak, Stanislaw; Gordon, Frank E. (2007), "Production of High Energy Particles Using the Pd/D Co-Deposition Process", Proceedings of the 2007 APS March Meeting, March 5–9, 2007 in Denver (College Park, Maryland: American Physical Society), http://meetings.aps.org/link/BAPS.2007.MAR.A31.2, retrieved on 2008-05-25
- Mosier-Boss, Pamela A.; Szpak, Stanislaw; Gordon, Frank E.; Forsley, L. P. G. (2007), "Use of CR-39 in Pd/D co-deposition experiments", European Physical Journal Applied Physics 40: 293–303, doi:
- Mosier-Boss, Pamela A.; Szpak, Stanislaw; Gordon, Frank E.; Forsley, L. P. G. (2008), "Triple tracks in CR-39 as the result of Pd–D Co-deposition: evidence of energetic neutrons", Naturwissenschaften, doi:
- "Texas Panel Finds No Fraud In Cold Fusion Experiments", New York Times, November 20, 1990, http://query.nytimes.com/gst/fullpage.html?sec=health&res=9C0CE1DA143EF933A15752C1A966958260, retrieved on 2009-09-24
- Oriani, Richard A.; Nelson, John C.; Lee, Sung-Kyu; Broadhurst, J. H. (1990), "Calorimetric Measurements of Excess Power Output During the Cathodic Charging of Deuterium into Palladium", Fusion Technology 18: 652–662, ISSN 0748-1896
- Packham, Richard A. (1989), "Production of tritium from D2O electrolysis at a palladium cathode", Journal of Electroanalytical Chemistry 270: 451, doi:
- Paneth, Fritz; Peters, Kurt (1926), "Über die Verwandlung von Wasserstoff in Helium" (in German), Naturwissenschaften 14 (43): 956–962, doi:
- Park, Robert (2000), Voodoo Science: The Road from Foolishness to Fraud, New York: Oxford University Press, ISBN 0-19-513515-6, http://en.wikipedia.org/wiki/Voodoo_science
- Platt, Charles (1998), "What if Cold Fusion is Real?", Wired Magazine (6.11), http://www.wired.com/wired/archive/6.11/coldfusion.html?pg=1&topic=&topic_set=, retrieved on 2008-05-25
- Pollack, A. (August 26, 1997), "Japan, Long a Holdout, is Ending its Quest for Cold Fusion", New York Times 79: 243, C4, http://query.nytimes.com/gst/fullpage.html?res=9A0CE0DF1F3EF935A1575BC0A961958260&n=Top/News/Science/Topics/Research
- Seata, Peter N.; Schaffer, Michael J.; Morrison, Douglas R.O.; Heeter, Robert F. (October 21, 1999), "What is the current scientific thinking on cold fusion? Is there any possible validity to this phenomenon?", Scientific American, Ask the Experts, http://www.sciam.com/article.cfm?id=what-is-the-current-scien, retrieved on 2008-12-17 - (each author writing separately)
- Scaramuzzi, F. (2000), "Ten years of cold fusion: an eye-witness account", Accountability in Research 8 (1&2): 77, ISSN 0898-9621, OCLC 17959730 - (page numbers refer to a blocked link to an authorized reprint)
- Seife, Charles (2008), Sun in a Bottle: The Strange History of Fusion and the Science of Wishful Thinking, New York: Viking, ISBN 0670020338
- Seife, Charles (10 December 2004), "Department of Energy: Outlook for Cold Fusion Is Still Chilly", Science 306 (5703): 1873a, doi: , PMID 15591169, http://www.sciencemag.org/cgi/content/full/306/5703/1873a, retrieved on 2008-10-28
- Shamoo, Adil E.; Resnik, David B. (2003), Oxford University Press US, ed., Responsible Conduct of Research (2, illustrated ed.), pp. 132-133, ISBN 0195148460</ref>
- Shanahan, Kirk L. (23 May 2002), "A systematic error in mass flow calorimetry demonstrated", Thermochimica Acta 382 (2): 95–100, doi:
- Shanahan, Kirk L. (April 2005), "Comments on "Thermal behavior of polarized Pd/D electrodes prepared by co-deposition"" (PDF), Thermochimica Acta 428 (1-2): 207–212, doi:, http://sti.srs.gov/fulltext/ms2004528/ms2004528.pdf
- Shanahan, Kirk L. (15 February 2006), "Reply to 'Comment on papers by K. Shanahan that propose to explain anomalous heat generated by cold fusion', E. Storms, Thermochim. Acta, 2006" (PDF), Thermochimica Acta 441 (2): 210–214, doi: , ISSN 0040-6031, OCLC 825205, http://sti.srs.gov/fulltext/2005/ms2005556.pdf
- Shkedi, Zvi; McDonald, Robert C.; Breen, John J.; Maguire, Stephen J.; Veranth, Joe (1995), "Calorimetry, Excess Heat, and Faraday Efficiency in Ni-H2O Electrolytic Cells", Fusion Technology 28 (4): 1720–1731, ISSN 0748-1896
- Shkedi, Zvi (1996-10-26), "Response to Comments on 'Calorimetry, Excess Heat, and Faraday Efficiency in Ni-H2O Electrolytic Cells'", Fusion Technology 30 (1): 133, ISSN 0748-1896
- Srinivasan, M. (2008), "Meeting report: Energy concepts for the 21st century" (PDF), Current Science 94 (7): 842–843, ISSN 0011-3891, OCLC 1565678, http://www.ias.ac.in/currsci/apr102008/842.pdf, retrieved on 10 April 2008
- Storms, Edmund (2006), "Comment on papers by K. Shanahan that propose to explain anomalous heat generated by cold fusion", Thermochimica Acta 441 (2): 207, doi:
- Storms, Edmund (2007), Science of Low Energy Nuclear Reaction: A Comprehensive Compilation of Evidence and Explanations, Singapore: World Scientific, ISBN 9-8127062-0-8
- Szpak, Stanislaw; Mosier-Boss, Pamela A.; Miles, Melvin H.; Fleischmann, Martin (2004), "Thermal behavior of polarized Pd/D electrodes prepared by co-deposition.", Thermochimica Acta 410: 101, doi:
- Szpak, Stanislaw; Mosier-Boss, Pamela A.; Young, Charles; Gordon, Frank E. (2005), "Evidence of nuclear reactions in the Pd lattice", Naturwissenschaften 92 (8): 394–397, doi:
- Tate, N. (1989), "MIT bombshell knocks fusion ‘breakthrough’ cold", Boston Herald (May 1, 1989): 1, ISSN 0738-5854
- Taubes, Gary (15 June 1990), "Cold fusion conundrum at Texas A&M", Science 248: 1299-1304, doi: , PMID 17735269
- Taubes, Gary (1993), Bad Science: The Short Life and Weird Times of Cold Fusion, New York: Random House, ISBN 0-394-58456-2
- U.S. Department of Energy (1989), A Report of the Energy Research Advisory Board to the United States Department of Energy, Washington, DC: U.S. Department of Energy, http://www.ncas.org/erab/, retrieved on 2008-05-25
- U.S. Department of Energy (2004) (PDF), Report of the Review of Low Energy Nuclear Reactions, Washington, DC: U.S. Department of Energy, http://web.archive.org/web/20080226210800/http://www.science.doe.gov/Sub/Newsroom/News_Releases/DOE-SC/2004/low_energy/CF_Final_120104.pdf, retrieved on 2008-07-19
- Van Noorden, R. (April 2007), "Cold fusion back on the menu" (ASP), Chemistry World, ISSN 1473-7604, http://www.rsc.org/chemistryworld/News/2007/March/22030701.asp, retrieved on 2008-05-25
- Voss, David (March 1, 1999), "What Ever Happened to Cold Fusion", Physics World, ISSN 0953-8585, http://physicsworld.com/cws/article/print/1258, retrieved on 2008-05-01
- Wilford, John Noble (April 24, 1989), "Fusion Furor: Science's Human Face", New York Times, ISSN 0362-4331, http://query.nytimes.com/gst/fullpage.html?res=950DE7DF133CF937A15757C0A96F948260&sec=&spon=&pagewanted=all, retrieved on 2008-09-23
- Will, F.G. (1997), "Hydrogen + oxygen recombination and related heat generation in undivided electrolysis cells", Journal of Electroanalytical Chemistry 426 (1): 177–184, doi:
- Williams, D.E.; Findlay, D.J.S.; Craston, D.H.; Sené, M.R.; Bailey, M.; Croft, S.; Hooton, B.W.; Jones, C.P.; et al. (1989), "Upper bounds on 'cold fusion' in electrolytic cells", Nature 342: 375–384, doi:
- Wilson, R.H. (1992), "Analysis of experiments on the calorimetry of LiOD-D2O electrochemical cells", Journal of Electroanalytical Chemistry 332: 1–31, doi: