Truss
From Wikipedia, the free encyclopedia
In architecture and structural engineering, a truss is a structure comprising one or more triangular units constructed with straight slender members whose ends are connected at joints referred to as nodes. External forces and reactions to those forces are considered to act only at the nodes and result in forces in the members which are either tensile or compressive forces. Moments (torsional forces) are explicitly excluded because, and only because, all the joints in a truss are treated as revolutes.
A planar truss is one where all the members and nodes lie within a two dimensional plane, while a space truss has members and nodes extending into three dimensions.
Contents |
[edit] Characteristics of trusses
A truss is composed of triangles because of the structural stability of that shape and design. A triangle is the simplest geometric figure that will not change shape when the lengths of the sides are fixed.[1] In comparison, both the angles and the lengths of a square must be fixed for it to retain its shape.
The simplest form of a truss is one single triangle. This type of truss is seen in a framed roof consisting of rafters and a ceiling joist.[2] Because of the stability of this shape and the methods of analysis used to calculate the forces within it, a truss composed entirely of triangles is known as a simple truss.[3]
A planar truss lies in a single plane.[3] Planar trusses are typically used in parallel to form roofs and bridges. A space truss is a three-dimensional framework of members pinned at their ends. A tetrahedron shape is the simplest space truss, consisting of six members which meet at four joints.[3]
The depth of a truss, or the height between the upper and lower chords, is what makes it an efficient structural form. A solid girder or beam of equal strength would have substantial weight and material cost as compared to a truss. For a given span length, a deeper truss will require less material in the chords and greater material in the verticals and diagonals. An optimum depth of the truss will maximize the efficiency.[4]
[edit] Truss types
There are two basic types of truss:
- The pitched truss, or common truss, is characterized by its triangular shape. It is most often used for roof construction. Some common trusses are named according to their web configuration. The chord size and web configuration are determined by span, load and spacing.
- The parallel chord truss, or flat truss, gets its name from its parallel top and bottom chords. It is often used for floor construction.
A combination of the two is a truncated truss, used in hip roof construction. A metal plate-connected wood truss is a roof or floor truss whose wood members are connected with metal connector plates.
[edit] Pratt truss
The Pratt truss was patented in 1844 by two Boston railway engineers[5]; Caleb Pratt and his son Thomas Willis Pratt[6]. The design uses vertical beams for compression and horizontal beams to respond to tension. What is remarkable about this style is that it remained popular even as wood gave way to iron, and even still as iron gave way to steel.[7]
The Southern Pacific Railroad bridge in Tempe, Arizona is a 393 meter (1291 foot) long truss bridge built in 1912[8]. The structure is composed of nine Pratt truss spans of varying lengths. The bridge is still in use today.
[edit] Bow string roof truss
Named for its vicissitudal shape, thousands of bow strings were used during World War II for aircraft hangars and other military buildings.
[edit] King post truss
One of the simplest truss styles to implement, the king post consists of two angled supports leaning into a common vertical support.
The queen post truss, sometimes queenpost or queenspost, is similar to a king post truss in that the outer supports are angled towards the center of the structure. The primary difference is the horizontal extension at the centre which relies on beam action to provide mechanical stability. This truss style is only suitable for relatively short spans. [9]
[edit] Lenticular Truss
American Lenticular Truss Bridges have the top and bottom chords of the truss arched forming a lens shape. Patented in 1878 by William Douglas.
[edit] Town's lattice truss
American architect Ithiel Town designed Town's Lattice Truss as an alternative to heavy-timber bridges. His design, patented in 1835, uses easy-to-handle planks arranged diagonally with short spaces in between them.
[edit] Vierendeel truss
The Vierendeel truss is a truss where the members are not triangulated but form rectangular openings, and is a frame with fixed joints that are capable of transferring and resisting bending moments. Regular trusses comprise members that are commonly assumed to have pinned joints with the implication that no moments exist at the jointed ends. This style of truss was named after the Belgian engineer Arthur Vierendeel[10], who developed the design in 1896. Its use for bridges is rare due to higher costs compared to a triangulated truss.
The utility of this type of truss in buildings is that there is no diagonal bracing, the creation of rectangular openings for windows and doors is simplified and in cases the need for compensating shear walls is reduced or eliminated.
After being damaged by the impact of a plane hitting the building, parts of the framed curtain walls of the Twin Towers of the World Trade Center resisted collapse by Vierendeel action displayed by the remaining portions of the frame.
[edit] Statics of trusses
A truss that is assumed to comprise members that are connected by means of pin joints, and which is supported at both ends by means of hinged joints or rollers, is described as being statically determinate. Newton's Laws apply to the structure as a whole, as well as to each node or joint. In order for any node that may be subject to an external load or force to remain static in space, the following conditions must hold: the sums of all horizontal forces, all vertical forces, as well as all moments acting about the node equal zero. Analysis of these conditions at each node yields the magnitude of the forces in each member of the truss. These may be compression or tension forces.
Trusses that are supported at more than two positions are said to be statically indeterminate, and the application of Newton's Laws alone is not sufficient to determine the member forces.
In order for a truss with pin-connected members to be stable, it must be entirely composed of triangles. In mathematical terms, we have the following necessary condition for stability:
where m is the total number of truss members, j is the total number of joints and r is the number of reactions (equal to 3 generally) in a 2-dimensional structure.
When m = 2j − 3, the truss is said to be statically determinate, because the (m+3) internal member forces and support reactions can then be completely determined by 2j equilibrium equations, once we know the external loads and the geometry of the truss. Given a certain number of joints, this is the minimum number of members, in the sense that if any member is taken out (or fails), then the truss as a whole fails. While the relation (a) is necessary, it is not sufficient for stability, which also depends on the truss geometry, support conditions and the load carrying capacity of the members.
Some structures are built with more than this minimum number of truss members. Those structures may survive even when some of the members fail. They are called statically indeterminate structures, because their member forces depend on the relative stiffness of the members, in addition to the equilibrium condition described.
[edit] Analysis of trusses
Because the forces in each of its two main girders are essentially planar, a truss is usually modelled as a two-dimensional plane frame. If there are significant out-of-plane forces, the structure must be modelled as a three-dimensional space.
The analysis of trusses often assumes that loads are applied to joints only and not at intermediate points along the members. The weight of the members is often insignificant compared to the applied loads and so is often omitted. If required, half of the weight of each member may be applied to its two end joints. Provided the members are long and slender, the moments transmitted through the joints are negligible and they can be treated as "hinges" or 'pin-joints'. Every member of the truss is then in pure compression or pure tension – shear, bending moment, and other more complex stresses are all practically zero. This makes trusses easier to analyze. This also makes trusses physically stronger than other ways of arranging material – because nearly every material can hold a much larger load in tension and compression than in shear, bending, torsion, or other kinds of force.
Structural analysis of trusses of any type can readily be carried out using a matrix method such as the direct stiffness method, the flexibility method or the finite element method.
[edit] Forces in members
On the right is a simple, statically determinate flat truss with 9 joints and (2 x 9) − 3 = 15 members. External loads are concentrated in the outer joints. Since this is a symmetrical truss with symmetrical vertical loads, it is clear to see that the reactions at A and B are equal, vertical and half the total load.
The internal forces in the members of the truss can be calculated in a variety of ways including the graphical methods:
- Cremona diagram
- Culmann diagram
- the analytical Ritter method (method of sections).
[edit] Design of members
A truss can be thought of as a beam where the web consists of a series of separate members instead of a continuous plate. In the truss, the lower horizontal member (the bottom chord) and the upper horizontal member (the top chord) carry tension and compression, fulfilling the same function as the flanges of an I-beam. Which chord carries tension and which carries compression depends on the overall direction of bending. In the truss pictured above right, the bottom chord is in tension, and the top chord in compression.
The diagonal and vertical members form the truss web, and carry the shear force. Individually, they are also in tension and compression, the exact arrangement of forces depending on the type of truss and again on the direction of bending. In the truss shown above right, the vertical members are in tension, and the diagonals are in compression.
In addition to carrying the static forces, the members serve additional functions of stabilizing each other, preventing buckling. In the picture, the top chord is prevented from buckling by the presence of bracing and by the stiffness of the web members.
The inclusion of the elements shown is largely an engineering decision based upon economics, being a balance between the costs of raw materials, off-site fabrication, component transportation, on-site erection, the availability of machinery and the cost of labor. In other cases the appearance of the structure may take on greater importance and so influence the design decisions beyond mere matters of economics. Modern materials such as prestressed concrete and fabrication methods, such as automated welding, have significantly influenced the design of modern bridges.
Once the force on each member is known, the next step is to determine the cross section of the individual truss members. For members under tension the cross-sectional area A can be found using A = F × γ / σy, where F is the force in the member, γ is a safety factor (typically 1.5 but depending on building codes) and σy is the yield tensile strength of the steel used.
The members under compression also have to be designed to be safe against buckling.
The weight of a truss member depends directly on its cross section -- that weight partially determines how strong the other members of the truss need to be. Giving one member a larger cross section than on a previous iteration requires giving other members a larger cross section as well, to hold the greater weight of the first member -- one needs to go through another iteration to find exactly how much greater the other members need to be. Sometimes the designer goes through several iterations of the design process to converge on the "right" cross section for each member. On the other hand, reducing the size of one member from the previous iteration merely makes the other members have a larger (and more expensive) safety factor than is technically necessary, but doesn't require another iteration to find a buildable truss.
The effect of the weight of the individual truss members in a large truss, such as a bridge, is usually insignificant compared to the force of the external loads.
[edit] Design of joints
After determining the minimum cross section of the members, the last step in the design of a truss would be detailing of the bolted joints, e.g., involving shear of the bolt connections used in the joints, see also shear stress.
[edit] See also
Wikimedia Commons has media related to: trusses |
Look up truss in Wiktionary, the free dictionary. |
- Andreini tessellations, the only 28 ways to fill 3D space with trusses that have identical joints everywhere
- Brown truss
- Geodesic dome, a truss in the shape of a sphere
- Girder
- Mechanics of structures
- Serrurier truss, a truss form used for telescopes
- Space frame
- Stress:
- Structural steel
- Tensegrity truss, a truss where no compression member touches any other compression member
- Truss bridge
- Truss rod, a guitar part
[edit] References
- ^ Ricker, Nathan Clifford (1912) [1912]. A Treat on Design and Construction of Roofs. New York: J. Wiley & Sons. pp. 12. http://books.google.com/books?id=b6oJAAAAIAAJ. Retrieved on 2008-08-15.
- ^ Maginnis, Owen Bernard (1903). Roof Framing Made Easy (2nd edition ed.). New York: The Industrial Publication Company. pp. 9. http://books.google.com/books?id=GJdBAAAAIAAJ. Retrieved on 2008-08-16.
- ^ a b c Hibbeler, Russell Charles (1983) [1974]. Engineering Mechanics-Statics (3rd edition ed.). New York: Macmillan Publishing Co., Inc.. pp. 199–224. ISBN 0-02-354310-8.
- ^ Merriman, Mansfield (1912) [192]. American Civil Engineers' Pocket Book. New York: J. Wiley & Sons. pp. 785. http://books.google.com/books?id=AUVIAAAAIAAJ. Retrieved on 2008-08-16. "The Economic Depth of a Truss is that which makes the material in a bridge a minimum."
- ^ Bethanga Bridge at the NSW Heritage Office; retrieved 2008-Feb-06
- ^ A Brief History of Covered Bridges in Tennessee at the Tenessee Department of Transportation; retrieved 2008-Feb-06
- ^ The Pratt Truss courtesy of the Maryland Department of Transportation; retrieved 2008-Feb-6
- ^ Tempe Historic Property Survey at the Tempe Historical Museum; retrieved 2008-Feb-06
- ^ Covered Bridge's Truss Types
- ^ Vierendeel bruggen
[edit] External links
- Historic Bridges of Michigan and Elsewhere With a focus on metal truss bridges, this site provides photos, information, maps, and links
- "Preventing Injuries and Deaths of Fire Fighters Due to Truss System Failures," National Institute for Occupational Safety and Health, Accessed September 13, 2007
- Classical Truss Theory
- An Introduction to Historic Truss Bridges
- Truss bridge designer simulation (requires Java)
- Trusses in 20th-century architecture
- Vierendeel bridges (in Dutch)
- Residential trussed roofs Australia
- Structural Building Components Association
- Truss Types Visual Guide at Structural Wiki. Line diagrams and names of 30+ truss types.
- American Lenticular Truss Bridges