Network bridge
From Wikipedia, the free encyclopedia
This article needs additional citations for verification. Please help improve this article by adding reliable references (ideally, using inline citations). Unsourced material may be challenged and removed. (January 2009) |
It has been suggested that this article or section be merged with Bridging_(networking). (Discuss) |
It has been suggested that transparent bridge be merged into this article or section. (Discuss) |
A network bridge connects multiple network segments at the data link layer (layer 2) of the OSI model, and the term layer 2 switch is very often used interchangeably with bridge. Bridges are similar to repeaters or network hubs, devices that connect network segments at the physical layer; however, with bridging, traffic from one network is managed rather than simply rebroadcast to adjacent network segments. In Ethernet networks, the term "bridge" formally means a device that behaves according to the IEEE 802.1D standard—this is most often referred to as a network switch in marketing literature.[citation needed]
Bridges tend to be more complex than hubs or repeaters. Bridges can analyze incoming data packets to determine if the bridge is able to send the given packet to another segment of the network.
Since bridging takes place at the data link layer of the OSI model, a bridge processes the information from each frame of data it receives. In an Ethernet frame, this provides the MAC address of the frame's source and destination. Bridges use two methods to resolve the network segment that a MAC address belongs to.
- Transparent bridging – This method uses a forwarding database to send frames across network segments. The forwarding database is initially empty and entries in the database are built as the bridge receives frames. If an address entry is not found in the forwarding database, the frame is rebroadcast to all ports of the bridge, forwarding the frame to all segments except the source address. By means of these broadcast frames, the destination network will respond and a route will be created. Along with recording the network segment to which a particular frame is to be sent, bridges may also record a bandwidth metric to avoid looping when multiple paths are available. Devices that have this transparent bridging functionality are also known as adaptive bridges. They are primarily found in Ethernet networks.
- Source route bridging – With source route bridging two frame types are used in order to find the route to the destination network segment. Single-Route (SR) frames make up most of the network traffic and have set destinations, while All-Route (AR) frames are used to find routes. Bridges send AR frames by broadcasting on all network branches; each step of the followed route is registered by the bridge performing it. Each frame has a maximum hop count, which is determined to be greater than the diameter of the network graph, and is decremented by each bridge. Frames are dropped when this hop count reaches zero, to avoid indefinite looping of AR frames. The first AR frame which reaches its destination is considered to have followed the best route, and the route can be used for subsequent SR frames; the other AR frames are discarded. This method of locating a destination network can allow for indirect load balancing among multiple bridges connecting two networks. The more a bridge is loaded, the less likely it is to take part in the route finding process for a new destination as it will be slow to forward packets. A new AR packet will find a different route over a less busy path if one exists. This method is very different from transparent bridge usage, where redundant bridges will be inactivated; however, more overhead is introduced to find routes, and space is wasted to store them in frames. A switch with a faster backplane can be just as good for performance, if not for fault tolerance. They are primarily found in Token Ring networks.
Contents |
[edit] Advantages of network bridges
- Self configuring
- Primitive bridges are often inexpensive
- Reduce size of collision domain by microsegmentation in non switched networks
- Transparent to protocols above the MAC layer
- Allows the introduction of management - performance information and access control
- LANs interconnected are separate and physical constraints such as number of stations, repeaters and segment length don't apply
- Helps minimize bandwidth usage
[edit] Disadvantages of network bridges
- Does not limit the scope of broadcasts
- Does not scale to extremely large networks
- Buffering introduces store and forward delays - on average traffic destined for bridge will be related to the number of stations on the rest of the LAN
- Bridging of different MAC protocols introduces errors
- Because bridges do more than repeaters by viewing MAC addresses, the extra processing makes them slower than repeaters
- Bridges are more expensive than repeaters
Although infinite bridges(or layer 2 switches) can be connected in theory, often a broadcast storm will result as more and more collisions occur. Collisions delay service advertisements, which causes the hosts to back off and attempt to retransmit after a pseudo-random interval. Because bridges simply repeat any Layer 2 broadcast traffic, this can result in undesirable broadcast traffic consuming the network. An example would be a bridge in between adjacent office buildings. It is unlikely that the advantages of bridging would outweigh the loss of network bandwidth associated with all of the service advertisements.
Another major disadvantage is that any standards-compliant implementation of bridging cannot have any closed loops in a network. This limits both performance and reliability.
[edit] Bridging versus routing
Bridging and routing are both ways of performing data control, but work through different methods. Bridging takes place at OSI Model Layer 2 (Data-Link Layer) while Routing takes place at the OSI Model Layer 3 (Network Layer). This difference means that a bridge directs frames according to hardware assigned MAC addresses while a router makes its decisions according to arbitrarily assigned IP Addresses. As a result of this, bridges are not concerned with and are unable to distinguish networks while routers can.
When designing a network, one can choose to put multiple segments into one bridged network or to divide it into different networks interconnected by routers. If a host is physically moved from one network area to another in a routed network, it has to get a new IP address; if this system is moved within a bridged network, it doesn't have to reconfigure anything. These days bridges are replaced by switches.[citation needed]
[edit] Bridge versus Layer 2 Switch
- Bridge frame handling is done in software. A layer 2 switch performs address recognition and frame forwarding with hardware. (Similarly, a router and a layer 3 switch differ only by whether they forward in software, or hardware).
- A bridge can typically only analyze/forward one packet at a time, while a layer 2 switch has multiple parallel data paths and can handle multiple frames simultaneously.
- A bridge uses store-and-forward (it buffers the incoming frame, and then performs a CRC to ensure data integrity before forwarding the frame), while a layer 2 switch can be configured to either use store-and-forward, or to use cut-through (sending the frame through as soon as the destination MAC address is realized, without checking the data for correctness).
Because a layer 2 switch can incorporate the functions of a bridge, the bridge has suffered commercially. New installations typically include layer 2 switches with bridge functionality, rather than bridges. This has lead to the general mixing of the two terms. [1]
[edit] Specific uses of the term "bridge"
Documentation on Linux bridging can be found in the Linux networking wiki. Linux bridging allows filtering and routing.
Certain versions of Windows (including XP and Vista) allow for creating a Network Bridge - a network component that aggregates two or more Network Connections and establishes a bridging environment between them. Windows does not support creating more than one network bridge per system.
[edit] Filtering Database
To translate between two segments types, a bridge reads a frame's destination MAC address and decides to either forward or filter. If the bridge determines that the destination node is on another segment on the network, it forwards it (retransmits) the packet to that segment. If the destination address belongs to the same segment as the source address, the bridge filters (discards) the frame. As nodes transmit data through the bridge, the bridge establishes a filtering database (also known as a forwarding table) of known MAC addresses and their locations on the network. The bridge uses its filtering database to determine whether a packet should be forwarded or filtered.
[edit] See also
- Network hub
- Wireless bridge
- Router
- InterLnk
- null-modem
- Spanning Tree Protocol
- Instrument bridge
- Bridging (networking)
- Promiscuous Mode
- Repeater (a bridge includes repeater functions)
- Collision domain
- Broadcasting (computing)
[edit] References
- ^ Data and Computer Communications, Eighth Edition Chapter 15, section 5. Stallings.