Executive functions

From Wikipedia, the free encyclopedia

Jump to: navigation, search

The executive system is a theorized cognitive system in psychology that controls and manages other cognitive processes. It is also referred to as the executive function, executive functions, supervisory attentional system, or cognitive control.

The concept is used by psychologists and neuroscientists to describe a loosely defined collection of brain processes which are responsible for planning, cognitive flexibility, abstract thinking, rule acquisition, initiating appropriate actions and inhibiting inappropriate actions, and selecting relevant sensory information.[citations needed]


[edit] Hypothesized role

The executive system is thought to be heavily involved in handling novel situations outside the domain of some of our 'automatic' psychological processes that could be explained by the reproduction of learned schemas or set behaviors. Psychologists Don Norman and Tim Shallice have outlined five types of situation where routine activation of behavior would not be sufficient for optimal performance:[1]

  1. Those that involve planning or decision making.
  2. Those that involve error correction or troubleshooting.
  3. Situations where responses are not well-learned or contain novel sequences of actions.
  4. Dangerous or technically difficult situations.
  5. Situations which require the overcoming of a strong habitual response or resisting temptation.

The executive functions are often invoked when it is necessary to override responses that may otherwise be automatically elicited by stimuli in the external environment. For example, on being presented with a potentially rewarding stimulus, such as a tasty piece of chocolate cake, the automatic response might be to take a bite. However, where this behaviour conflicts with internal plans (such as having decided not to eat chocolate cake while on a diet), the executive functions might be engaged to inhibit this response. The neural mechanisms by which the executive functions are implemented is a topic of ongoing debate in the field of cognitive neuroscience.

Neuropsychologist Elkhonon Goldberg, a disciple of Alexander Luria, introduced the metaphor of the prefrontal cortex as the director of an orchestra and the cortex as the front rows in order to explain the role of executive functions.

[edit] Historical perspective

Although research into the executive functions and their neural basis has increased markedly over the past 5 years, the theoretical framework in which it is situated is not new. In the 1950s, the British psychologist Donald Broadbent drew a distinction between "automatic" and "controlled" processes (a distinction characterized more fully by Shiffrin and Schneider in 1977),[2] and introduced the notion of selective attention, to which executive functions are closely allied. In 1975, the US psychologist Michael Posner use the term "cognitive control" in his book chapter entitled "Attention and cognitive control".[3]

The work of influential researchers such as Michael Posner, Joaquin Fuster, Tim Shallice, and their colleagues in the 1980s (and later Trevor Robbins, Bob Knight, Don Stuss and others) laid much of the groundwork for recent research into executive functions. For example, Posner proposed that there is separate "executive" branch of the attentional system, which is responsible for focusing attention on selected aspects of the environment.[4] The British neuropsychologist Tim Shallice similarly suggested that attention is regulated by a "supervisory system", which can override automatic responses in favour of scheduling behaviour on the basis of plans or intentions.[5] Throughout this period, a consensus emerged that this control system is housed in the most anterior portion of the brain, the prefrontal cortex (PFC).

Psychologist Alan Baddeley had proposed a similar system as part of his model of working memory[6] and argued that there must be a component (which he named the "central executive") that allows information to be manipulated in short term memory (for example, when doing mental arithmetic).

[edit] Miller & Cohen's (2001) model

More recently, in 2001, Earl Miller and Jonathan Cohen published an influential article entitled 'An integrative theory of prefrontal cortex function' in which they argue that cognitive control is the primary function of the PFC, and that control is implemented by increasing the gain of sensory or motor neurons that are engaged by task- or goal-relevant elements of the external environment.[7] In a key paragraph, they argue:

'We assume that the PFC serves a specific function in cognitive control: the active maintenance of patterns of activity that represent goals and the means to achieve them. They provide bias signals throughout much of the rest of the brain, affecting not only visual processes but also other sensory modalities, as well as systems responsible for response execution, memory retrieval, emotional evaluation, etc. The aggregate effect of these bias signals is to guide the flow of neural activity along pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task.'

Miller and Cohen draw explicitly upon an earlier theory of visual attention which conceptualises perception of a visual scene in terms of competition among multiple representations - such as colors, individuals, or objects.[8] Selective visual attention acts to 'bias' this competition in favour of certain selected features or representations. For example, imagine that you are waiting at a busy train station for a friend who is wearing a red coat. You are able to selectively narrow the focus of your attention to search for red objects, in the hope of identifying your friend. Desimone and Duncan argue that the brain achieves this by selectively increasing the gain of neurons responsive to the color red, such that output from these neurons is more likely to reach a downstream processing stage, and consequently to guide behaviour. According to Miller and Cohen, this selective attention mechanism is in fact just a special case of cognitive control - one in which the biasing occurs in the sensory domain. According to Miller and Cohen's model, the PFC can exert control over input (sensory) or output (response) neurons, as well as over assemblies involved in memory, or emotion. Cognitive control is mediated by reciprocal connectivity between the PFC and both sensory, limbic, and motor cortices. Within their approach, thus, the term 'cognitive control' is applied to any situation where a biasing signal is used to promote task-appropriate responding, and control thus becomes a crucial component of a wide range of psychological constructs such as selective attention, error monitoring, decision-making, memory inhibition and response inhibition.

[edit] Experimental evidence

The executive system has been traditionally quite hard to define, mainly due to what psychologist Paul W. Burgess calls a lack of "process-behaviour correspondence".[9] That is, there is no single behavior which can in itself be tied to executive function, or indeed executive dysfunction. For example, it is quite obvious what reading-impaired patients cannot do, but it is not so obvious as to exactly what executive impaired patients might be incapable of.

This is largely due to the nature of the executive system itself. It is mainly concerned with the dynamic, "online" co-ordination of cognitive resources and hence its effect can only be observed by measuring other cognitive processes. Similarly, it does not always fully engage outside of real-world situations. As neurologist Antonio Damasio has reported, a patient with severe day-to-day executive problems may still pass paper-and-pencil or lab-based tests of executive function.[10]

Theories of the executive system were largely driven by observations of patients who had suffered frontal lobe damage. They exhibited disorganized actions and strategies for everyday tasks (a group of behaviors now known as dysexecutive syndrome) although they seemed to perform normally when clinical or lab based tests were used to assess more fundamental cognitive functions such as memory, learning, language and reasoning. It was hypothesized that, to explain this unusual behaviour, there must be an overarching system that co-ordinates other cognitive resources.

Much of the experimental evidence for the neural structures involved in executive functions comes from laboratory tasks such as the Stroop task or the Wisconsin Card Sorting Task (WCST). In the Stroop task, for example, human subjects are asked to name the color that color words are printed in when the ink color and word meaning often conflict (for example, the word "RED" in green ink). Executive functions are needed to perform this task, as the relatively overlearned and automatic behaviour (word reading) has to be inhibited in favour of a less practiced task - naming the ink color. Recent functional neuroimaging studies have shown that two parts of the PFC, the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC), are thought to be particularly important for performing this task. However, functional neuroimaging studies alone cannot prove that a given (activated) brain region is critical for task performance - that requires neuropsychology, e.g.[11] as well as other loss-of-function studies using transcranial magnetic stimulation, e.g.[12]

[edit] Context-sensitivity of PFC neurons

Other evidence for the involvement of the PFC in executive functions comes from single-cell electrophysiology studies in non-human primates, such as the macaque monkey, which have shown that (in contrast to cells in the posterior brain) many PFC neurons are sensitive to a conjunction of a stimulus and a context. For example, PFC cells might respond to a green cue in a condition where that cue signals that a leftwards fast movement of an eye, head should be made, but not to a green cue in another experimental context. This is important, because the optimal deployment of executive functions is invariably context-dependent. To quote an example offered by Miller and Cohen, a US resident might have an overlearned response to look left when crossing the road. However, when the "context" indicates that he or she is in the UK, this response would have to be suppressed in favour of a different stimulus-response pairing (look right when crossing the road). This behavioural repertoire clearly requires a neural system which is able to integrate the stimulus (the road) with a context (US, UK) to cue a behaviour (look left, look right). Current evidence suggests that neurons in the PFC appear to represent precisely this sort of information. Other evidence from single-cell electrophysiology in monkeys implicates ventrolateral PFC (inferior prefrontal convexity) in the control of motor responses. For example, cells have been identified which increase their firing rate to NoGo signals[13] as well as a signal that says "don't look there!"[14]

[edit] Evidence for attentional biasing in sensory regions

Electrophysiology and functional neuroimaging studies involving human subjects have been used to describe the neural mechanisms underlying attentional biasing. Most studies have looked for activation at the 'sites' of biasing, such as in the visual or auditory cortices. Early studies employed event-related potentials to reveal that electrical brain responses recorded over left and right visual cortex are enhanced when the subject is instructed to attend to the appropriate (contralateral) side of space.[15] The advent of bloodflow-based neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) has more recently permitted the demonstration that neural activity in a number of sensory regions, including color-, motion-, and face-responsive regions of visual cortex, is enhanced when subjects are directed to attend to that dimension of a stimulus, suggestive of gain control in sensory neocortex. For example, in a typical study, Liu and coworkers[16] presented subjects with arrays of dots moving to the left or right, presented in either red or green. Preceding each stimulus, an instruction cue indicated whether subjects should respond on the basis of the colour or the direction of the dots. Even though colour and motion were present in all stimulus arrays, fMRI activity in colour-sensitive regions (V4) was enhanced when subjects were instructed to attend to the colour, and activity in motion-sensitive regions was increased when subjects were cued to attend to the direction of motion. Several studies have also reported evidence for the biasing signal prior to stimulus onset, with the observation that regions of the frontal cortex tend to come active prior to the onset of an expected stimulus.[17]

[edit] Connectivity between the PFC and sensory regions when executive functions are used

Despite the growing currency of the 'biasing' model of executive functions, direct evidence for functional connectivity between the PFC and sensory regions when executive functions are used, is to date rather sparse.[18] Indeed, the only direct evidence comes from studies in which a portion of frontal cortex is damaged, and a corresponding effect is observed far from the lesion site, in the responses of sensory neurons.[19][20] However, few studies have explored whether this effect is specific to situations where executive functions are required. Other methods for measuring connectivity between distant brain regions, such as correlation in the fMRI response, have yielded indirect evidence that the frontal cortex and sensory regions communicate during a variety of processes thought to engage executive functions, such as working memory,[21] but more research is required to establish how information flows between the PFC and the rest of the brain when executive functions are used.

[edit] Top down inhibitory control

Aside from facilitatory or amplificatory mechanisms of control, many authors have argued for inhibitory mechanisms in the domain of response control,[22] memory,[23] selective attention,[24] theory of mind,[25][26] emotion regulation,[27] as well as social emotions such as empathy.[28] A recent review on this topic argues that active inhibition is a valid concept in some domains of psychology/cognitive control.[29]

[edit] More recent contributions

Other important evidence for executive functions processes in the prefrontal cortex have been described. One widely-cited review article[30] emphasises the role of the medial part of the PFC in situations where executive functions are likely to be engaged – for example, where it is important to detect errors, identify situations where stimulus conflict may arise, make decisions under uncertainty, or when a reduced probability of obtaining favourable performance outcomes is detected. This review, like many others,[31] highlights interactions between medial and lateral PFC, whereby posterior medial frontal cortex signals the need for increased executive functions and sends this signal on to areas in dorsolateral prefrontal cortex that actually implement control. Yet there has been no compelling evidence at all that this view is correct, and indeed, one article showed that patients with lateral PFC damage had reduced ERN's (a putative sign of dorsomedial monitoring/error-feedback)[32] - suggesting, if anything, that the direction of flow of the control could be in the reverse direction. Another prominent theory[33] emphasises that interactions along the perpendicular axis of the frontal cortex, arguing that a 'cascade' of interactions between anterior PFC, dorsolateral PFC, and premotor cortex guides behaviour in accordance with past context, present context, and current sensorimotor associations respectively.

Advances in neuroimaging techniques have allowed studies of genetic links to executive functions, with the goal of using the imaging techniques as potential endophenotypes for discovering the genetic causes of executive function.[34]

[edit] See also

[edit] References

  1. ^ Norman DA, Shallice T (2000). "(1980) Attention to action: Willed and automatic control of behaviour". in Gazzaniga MS. Cognitive neuroscience: a reader. Oxford: Blackwell. ISBN 0-631-21660-X. 
  2. ^ Shiffrin RM, Schneider W (Mar 1977). "Controlled and automatic human information processing: II: Perceptual learning, automatic attending, and a general theory". Psychological Review 84 (2): 127–90. doi:10.1037/0033-295X.84.2.127. 
  3. ^ Posner MI, Snyder CRR (1975). "Attention and cognitive control". in Solso RL. Information processing and cognition: the Loyola symposium. Hillsdale, N.J: L. Erlbaum Associates. ISBN 0-470-81230-3. 
  4. ^ Posner MI, Petersen SE (1990). "The attention system of the human brain". Annu Rev Neurosci. 13: 25–42. doi:10.1146/annurev.ne.13.030190.000325. PMID 2183676. 
  5. ^ Shallice T (1988). From neuropsychology to mental structure. Cambridge, UK: Cambridge University Press. ISBN 0-521-31360-0. 
  6. ^ Baddeley AD (1986). Working memory. Oxford: Clarendon Press. ISBN 0-19-852133-2. 
  7. ^ Miller EK, Cohen JD (2001). "An integrative theory of prefrontal cortex function". Annu Rev Neurosci. 24: 167–202. doi:10.1146/annurev.neuro.24.1.167. PMID 11283309. 
  8. ^ Desimone R, Duncan J (1995). "Neural mechanisms of selective visual attention". Annu Rev Neurosci. 18: 193–222. doi:10.1146/annurev.ne.18.030195.001205. PMID 7605061. 
  9. ^ Rabbitt PMA (1997). "Theory and methodology in executive function research". Methodology of frontal and executive function. East Sussex: Psychology Press. ISBN 0-86377-485-7. 
  10. ^ Saver JL, Damasio AR (1991). "Preserved access and processing of social knowledge in a patient with acquired sociopathy due to ventromedial frontal damage". Neuropsychologia 29 (12): 1241–9. doi:10.1016/0028-3932(91)90037-9. PMID 1791934. 
  11. ^ Fellows LK, Farah MJ (Apr 2005). "Is anterior cingulate cortex necessary for cognitive control?". Brain 128 (Pt 4): 788–96. doi:10.1093/brain/awh405. PMID 15705613. 
  12. ^ Rushworth MF, Hadland KA, Paus T, Sipila PK (01 May 2002). "Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study". J Neurophysiol. 87 (5): 2577–92. PMID 11976394. http://jn.physiology.org/cgi/pmidlookup?view=long&pmid=11976394. 
  13. ^ Sakagami M, Tsutsui Ki, Lauwereyns J, Koizumi M, Kobayashi S, Hikosaka O (01 Jul 2001). "A code for behavioral inhibition on the basis of color, but not motion, in ventrolateral prefrontal cortex of macaque monkey". J Neurosci. 21 (13): 4801–8. PMID 11425907. http://www.jneurosci.org/cgi/pmidlookup?view=long&pmid=11425907. 
  14. ^ Hasegawa RP, Peterson BW, Goldberg ME (Aug 2004). "Prefrontal neurons coding suppression of specific saccades". Neuron 43 (3): 415–25. doi:10.1016/j.neuron.2004.07.013. PMID 15294148. 
  15. ^ Hillyard SA, Anllo-Vento L (Feb 1998). "Event-related brain potentials in the study of visual selective attention". Proc Natl Acad Sci USA. 95 (3): 781–7. doi:10.1073/pnas.95.3.781. PMID 9448241. PMC: 33798. http://www.pnas.org/cgi/pmidlookup?view=long&pmid=9448241. 
  16. ^ Liu T, Slotnick SD, Serences JT, Yantis S (Dec 2003). "Cortical mechanisms of feature-based attentional control". Cereb. Cortex 13 (12): 1334–43. doi:10.1093/cercor/bhg080. PMID 14615298. http://cercor.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=14615298. 
  17. ^ Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG (Apr 1999). "Increased activity in human visual cortex during directed attention in the absence of visual stimulation". Neuron 22 (4): 751–61. doi:10.1016/S0896-6273(00)80734-5. PMID 10230795. http://linkinghub.elsevier.com/retrieve/pii/S0896-6273(00)80734-5. 
  18. ^ Miller BT, D'Esposito M (Nov 2005). "Searching for "the top" in top-down control". Neuron 48 (4): 535–8. doi:10.1016/j.neuron.2005.11.002. PMID 16301170. 
  19. ^ Barceló F, Suwazono S, Knight RT (Apr 2000). "Prefrontal modulation of visual processing in humans". Nat Neurosci. 3 (4): 399–403. doi:10.1038/73975. PMID 10725931. 
  20. ^ Fuster JM, Bauer RH, Jervey JP (Mar 1985). "Functional interactions between inferotemporal and prefrontal cortex in a cognitive task". Brain Res. 330 (2): 299–307. doi:10.1016/0006-8993(85)90689-4. PMID 3986545. http://linkinghub.elsevier.com/retrieve/pii/0006-8993(85)90689-4. 
  21. ^ Gazzaley A, Rissman J, Desposito M (Dec 2004). "Functional connectivity during working memory maintenance". Cogn Affect Behav Neurosci 4 (4): 580–99. doi:10.3758/CABN.4.4.580. PMID 15849899. http://openurl.ingenta.com/content/nlm?genre=article&issn=1530-7026&volume=4&issue=4&spage=580&aulast=Gazzaley. 
  22. ^ Aron AR, Poldrack RA (Mar 2006). "Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus". J Neurosci. 26 (9): 2424–33. doi:10.1523/JNEUROSCI.4682-05.2006. PMID 16510720. 
  23. ^ Anderson MC, Green C (Mar 2001). "Suppressing unwanted memories by executive control". Nature 410 (6826): 366–9. doi:10.1038/35066572. PMID 11268212. 
  24. ^ Tipper SP (May 2001). "Does negative priming reflect inhibitory mechanisms? A review and integration of conflicting views". Q J Exp Psychol A 54 (2): 321–43. doi:10.1080/02724980042000183. PMID 11394050. 
  25. ^ Stone VE, Gerrans P (2006). "What's domain-specific about theory of mind?". Soc Neurosci 1 (3-4): 309–19. doi:10.1080/17470910601029221. PMID 18633796. 
  26. ^ Decety J, Lamm C (Dec 2007). "The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition". Neuroscientist 13 (6): 580–93. doi:10.1177/1073858407304654. PMID 17911216. 
  27. ^ Ochsner KN, Gross JJ (May 2005). "The cognitive control of emotion". Trends Cogn Sci. 9 (5): 242–9. doi:10.1016/j.tics.2005.03.010. PMID 15866151. 
  28. ^ Decety J, Grèzes J (Mar 2006). "The power of simulation: imagining one's own and other's behavior". Brain Res. 1079 (1): 4–14. doi:10.1016/j.brainres.2005.12.115. PMID 16460715. 
  29. ^ Aron AR (Jun 2007). "The neural basis of inhibition in cognitive control". Neuroscientist 13 (3): 214–28. doi:10.1177/1073858407299288. PMID 17519365. 
  30. ^ Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (Oct 2004). "The role of the medial frontal cortex in cognitive control". Science 306 (5695): 443–7. doi:10.1126/science.1100301. PMID 15486290. 
  31. ^ Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (Jul 2001). "Conflict monitoring and cognitive control". Psychol Rev 108 (3): 624–52. doi:10.1037/0033-295X.108.3.624. PMID 11488380. http://content.apa.org/journals/rev/108/3/624. 
  32. ^ Gehring WJ, Knight RT (May 2000). "Prefrontal-cingulate interactions in action monitoring". Nat Neurosci. 3 (5): 516–20. doi:10.1038/74899. PMID 10769394. 
  33. ^ Koechlin E, Ody C, Kouneiher F (Nov 2003). "The architecture of cognitive control in the human prefrontal cortex". Science 302 (5648): 1181–5. doi:10.1126/science.1088545. PMID 14615530. 
  34. ^ Greene CM, Braet W, Johnson KA, Bellgrove MA (2007). "Imaging the genetics of executive function". Biol Psychol 79: 30. doi:10.1016/j.biopsycho.2007.11.009. PMID 18178303. 

[edit] External links

Personal tools