Cyclone

From Wikipedia, the free encyclopedia

Jump to: navigation, search
Polar low over the Barents Sea on February 27, 1987

In meteorology, a cyclone refers to an area of closed, circular fluid motion rotating in the same direction as the Earth[1][2]. This is usually characterized by inward spiraling winds that rotate counter clockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere of the Earth.

Large-scale cyclonic circulations are almost always centred on areas of low atmospheric pressure[3][4]. The largest low-pressure systems are cold-core polar cyclones and extratropical cyclones which lie on the synoptic scale. Warm-core cyclones such as tropical cyclones, mesocyclones, and polar lows lie within the smaller mesoscale. Subtropical cyclones are of intermediate size.[5][6] Cyclones have also been seen on other planets outside of the Earth, such as Mars and Neptune.[7][8]

Cyclogenesis describes the process of cyclone formation and intensification [9]. Extratropical cyclones form as waves in large regions of enhanced midlatitude temperature contrasts called baroclinic zones. These zones contract to form weather fronts as the cyclonic circulation closes and intensifies. Later in their life cycle, cyclones occlude as cold core systems. A cyclone's track is guided over the course of its 2 to 6 day life cycle by the steering flow of the polar or subtropical jetstream.

Weather fronts separate two masses of air of different densities and are associated with the most prominent meteorological phenomena. Air masses separated by a front may differ in temperature or humidity. Strong cold fronts typically feature narrow bands of thunderstorms and severe weather, and may on occasion be preceded by squall lines or dry lines. They form west of the circulation center and generally move from west to east. Warm fronts form east of the cyclone center and are usually preceded by stratiform precipitation and fog. They move poleward ahead of the cyclone path. Occluded fronts form late in the cyclone life cycle near the enter of the cyclone and often wrap around the storm center.

Tropical cyclogenesis describes the process of development of tropical cyclones. Tropical cyclones form due to latent heat driven by significant thunderstorm activity, and are warm core.[10] Cyclones can transition between extratropical, subtropical, and tropical phases under the right conditions. Mesocyclones form as warm core cyclones over land, and can lead to tornado formation.[11] Waterspouts can also form from mesocyclones, but more often develop from environments of high instability and low vertical wind shear.[12]

Contents

[edit] Structure

There are a number of structural characteristics common to all cyclones. As they are low pressure areas, their center is the area of lowest atmospheric pressure in the region, often known in mature tropical cyclones as the eye.[13] Near the center, the pressure gradient force (from the pressure in the center of the cyclone compared to the pressure outside the cyclone) and the Coriolis force must be in an approximate balance, or the cyclone would collapse on itself as a result of the difference in pressure.[14] The wind flow around a large cyclone is counterclockwise in the northern hemisphere and clockwise in the southern hemisphere as a result of the Coriolis effect.[15] (An anticyclone, on the other hand, rotates clockwise in the northern hemisphere, and counterclockwise in the southern hemisphere.)

[edit] Formation

The initial extratropical low pressure area forms at the location of the red dot on the image. It is usually perpendicular (at a right angle to) the leaf-like cloud formation seen on satellite during the early stage of cyclogenesis. The location of the axis of the upper level jet stream is in light blue.

Cyclogenesis is the development or strengthening of cyclonic circulation in the atmosphere (a low pressure area).[9] Cyclogenesis is an umbrella term for several different processes, all of which result in the development of some sort of cyclone. It can occur at various scales, from the microscale to the synoptic scale. Extratropical cyclones form as waves along weather fronts before occluding later in their life cycle as cold core cyclones. Tropical cyclones form due to latent heat driven by significant thunderstorm activity, and are warm core.[10] Mesocyclones form as warm core cyclones over land, and can lead to tornado formation.[11] Waterspouts can also form from mesocyclones, but more often develop from environments of high instability and low vertical wind shear.[12] Cyclogenesis is the opposite of cyclolysis, and has an anticyclonic (high pressure system) equivalent which deals with the formation of high pressure areasAnticyclogenesis.[16]

The surface low has a variety of ways of forming. Topography can force a surface low when dense low-level high pressure system ridges in east of a north-south mountain barrier.[17] Mesoscale convective systems can spawn surface lows which are initially warm core.[18] The disturbance can grow into a wave-like formation along the front and the low will be positioned at the crest. Around the low, flow will become cyclonic, by definition. This rotational flow will push polar air equatorward west of the low via its trailing cold front, and warmer air with push poleward low via the warm front. Usually the cold front will move at a quicker pace than the warm front and “catch up” with it due to the slow erosion of higher density airmass located out ahead of the cyclone and the higher density airmass sweeping in behind the cyclone, usually resulting in a narrowing warm sector.[19] At this point an occluded front forms where the warm air mass is pushed upwards into a trough of warm air aloft, which is also known as a trowal.[20]

Tropical cyclones form when the energy released by the condensation of moisture in rising air causes a positive feedback loop over warm ocean waters.[21]

Tropical cyclogenesis is the technical term describing the development and strengthening of a tropical cyclone in the atmosphere.[22] The mechanisms through which tropical cyclogenesis occurs are distinctly different from those through which mid-latitude cyclogenesis occurs. Tropical cyclogenesis involves the development of a warm-core cyclone, due to significant convection in a favorable atmospheric environment. There are six main requirements for tropical cyclogenesis: sufficiently warm sea surface temperatures, atmospheric instability, high humidity in the lower to middle levels of the troposphere, enough Coriolis force to develop a low pressure center, a preexisting low level focus or disturbance, and low vertical wind shear.[23] An average of 86 tropical cyclones of tropical storm intensity form annually worldwide, with 47 reaching hurricane/typhoon strength, and 20 becoming intense tropical cyclones (at least Category 3 intensity on the Saffir-Simpson Hurricane Scale).[24]

Mesocyclones are believed to form when strong changes of wind speed and/or direction with height ("wind shear") sets parts of the lower part of the atmosphere spinning in invisible tube-like rolls. The convective updraft of a thunderstorm is then thought to draw up this spinning air, tilting the rolls' orientation upward (from parallel to the ground to perpendicular) and causing the entire updraft to rotate as a vertical column. Mesocyclones are normally relatively localized: they lie between the synoptic scale (hundreds of kilometers) and microscale (hundreds of meters). Radar imagery is used to identify these features.[25] The eye of the storm is usually calm and collected.

[edit] Types

There are six main types of cyclones: Polar cyclones, Polar lows, Extratropical cyclones, Subtropical cyclones, Tropical cyclones, and Mesocyclones

[edit] Polar cyclone

A polar, sub-polar, or Arctic cyclone (also known as a polar vortex)[26] is a vast area of low pressure which strengthens in the winter and weakens in the summer.[27] A polar cyclone is a low pressure weather system, usually spanning 1,000 kilometres (620 mi) to 2,000 kilometres (1,200 mi), in which the air circulates in a counterclockwise direction in the northern hemisphere, and a clockwise direction in the southern hemisphere. In the Northern Hemisphere, the polar cyclone has two centers on average. One center lies near Baffin Island and the other over northeast Siberia.[26] In the southern hemisphere, it tends to be located near the edge of the Ross ice shelf near 160 west longitude.[28] When the polar vortex is strong, westerly flow descends to the Earth's surface. When the polar cyclone is weak, significant cold outbreaks occur.[29]

[edit] Polar low

A polar low is a small-scale, short-lived atmospheric low pressure system (depression) that is found over the ocean areas poleward of the main polar front in both the Northern and Southern Hemispheres. The systems usually have a horizontal length scale of less than 1,000 kilometres (620 mi) and exist for no more than a couple of days. They are part of the larger class of mesoscale weather systems. Polar lows can be difficult to detect using conventional weather reports and are a hazard to high-latitude operations, such as shipping and gas and oil platforms. Polar lows have been referred to by many other terms, such as polar mesoscale vortex, Arctic hurricane, Arctic low, and cold air depression. Today the term is usually reserved for the more vigorous systems that have near-surface winds of at least 17 m/s.[30]

[edit] Extratropical

A fictitious synoptic chart of an extratropical cyclone affecting the UK and Ireland. The blue arrows between isobars indicate the direction of the wind, while the "L" symbol denotes the centre of the "low". Note the occluded, cold and warm frontal boundaries.

An extratropical cyclone is a synoptic scale low pressure weather system that has neither tropical nor polar characteristics, being connected with fronts and horizontal gradients in temperature and dew point otherwise known as "baroclinic zones".[31]

The descriptor "extratropical" refers to the fact that this type of cyclone generally occurs outside of the tropics, in the middle latitudes of the planet. These systems may also be described as "mid-latitude cyclones" due to their area of formation, or "post-tropical cyclones" where extratropical transition has occurred,[31][32] and are often described as "depressions" or "lows" by weather forecasters and the general public. These are the everyday phenomena which along with anti-cyclones, drive the weather over much of the Earth.

Although extratropical cyclones are almost always classified as baroclinic since they form along zones of temperature and dewpoint gradient, they can sometimes become barotropic late in their life cycle when the temperature distribution around the cyclone becomes fairly uniform with radius.[33] An extratropical cyclone can transform into a subtropical storm, and from there into a tropical cyclone, if it dwells over warm waters and develops central convection, which warms its core.[10]

[edit] Subtropical

A subtropical cyclone is a weather system that has some characteristics of a tropical cyclone and some characteristics of an extratropical cyclone. They can form between the equator and the 50th parallel.[34] As early as the 1950s, meteorologists were unclear whether they should be characterized as tropical cyclones or extratropical cyclones, and used terms such as quasi-tropical and semi-tropical to describe the cyclone hybrids.[35] By 1972, the National Hurricane Center officially recognized this cyclone category.[36] Subtropical cyclones began to receive names off the official tropical cyclone list in the Atlantic Basin in 2002.[34] They have broad wind patterns with maximum sustained winds located farther from the center than typical tropical cyclones, and exist in areas of weak to moderate temperature gradient.[34]

Since they form from initially extratropical cyclones which have colder temperatures aloft than normally found in the tropics, the sea surface temperatures required for their formation are lower than the tropical cyclone threshold by three degrees Celsius, or five degrees Fahrenheit, lying around 23 degrees Celsius.[37] This means that subtropical cyclones are more likely to form outside the traditional bounds of the hurricane season. Although subtropical storms rarely have hurricane-force winds, they may become tropical in nature as their cores warm.[38]

[edit] Tropical

A tropical cyclone is a storm system characterized by a low pressure center and numerous thunderstorms that produce strong winds and flooding rain. A tropical cyclone feeds on heat released when moist air rises, resulting in condensation of water vapour contained in the moist air. They are fueled by a different heat mechanism than other cyclonic windstorms such as nor'easters, European windstorms, and polar lows, leading to their classification as "warm core" storm systems.[10]

The term "tropical" refers to both the geographic origin of these systems, which form almost exclusively in tropical regions of the globe, and their formation in Maritime Tropical air masses. The term "cyclone" refers to such storms' cyclonic nature, with counterclockwise rotation in the Northern Hemisphere and clockwise rotation in the Southern Hemisphere. Depending on their location and strength, tropical cyclones are referred to by other names, such as hurricane, typhoon, tropical storm, cyclonic storm, tropical depression, or simply as a cyclone. Generally speaking, a tropical cyclone is referred to as a hurricane (from the name of the ancient Central American deity of wind, Huracan) in the Atlantic basin, and a Cyclone in the Pacific. [39]

While tropical cyclones can produce extremely powerful winds and torrential rain, they are also able to produce high waves and damaging storm surge.[40] They develop over large bodies of warm water,[41] and lose their strength if they move over land.[42] This is the reason coastal regions can receive significant damage from a tropical cyclone, while inland regions are relatively safe from receiving strong winds. Heavy rains, however, can produce significant flooding inland, and storm surges can produce extensive coastal flooding up to 40 kilometres (25 mi) from the coastline. Although their effects on human populations can be devastating, tropical cyclones can also relieve drought conditions.[43] They also carry heat and energy away from the tropics and transport it toward temperate latitudes, which makes them an important part of the global atmospheric circulation mechanism. As a result, tropical cyclones help to maintain equilibrium in the Earth's troposphere, and to maintain a relatively stable and warm.

Many tropical .cyclones develop when the atmospheric conditions around a weak disturbance in the atmosphere are favorable. Others form when other types of cyclones acquire tropical characteristics. Tropical systems are then moved by steering winds in the troposphere; if the conditions remain favorable, the tropical disturbance intensifies, and can even develop an eye. On the other end of the spectrum, if the conditions around the system deteriorate or the tropical cyclone makes landfall, the system weakens and eventually dissipates. A tropical cyclone can become extratropical as it moves toward higher latitudes if its energy source changes from heat released by condensation to differences in temperature between air masses;[10] From an operational standpoint, a tropical cyclone is usually not considered to become subtropical during its extratropical transition.[44]

[edit] Mesoscale

A mesocyclone from the Greensburg, Kansas tornado indicated on Doppler weather radar.

A mesocyclone is a vortex of air, approximately 2 kilometres (1.2 mi) to 10 kilometres (6.2 mi) in diameter (the mesoscale of meteorology), within a convective storm.[45] Air rises and rotates around a vertical axis, usually in the same direction as low pressure systems in a given hemisphere. They are most often cyclonic, that is, associated with a localized low-pressure region within a severe thunderstorm.[46] Such storms can feature strong surface winds and severe hail. Mesocyclones often occur together with updrafts in supercells, where tornadoes may form. About 1700 mesocyclones form annually across the United States, but only half produce tornadoes.[11]

[edit] Extraterrestrial cyclones

Cyclone on Mars, imaged by the Hubble Space Telescope

Cyclones are not unique to Earth. Cyclonic storms are common on Jovian planets, like the Small Dark Spot on Neptune. Also known as the Wizard's Eye, it is about one third the diameter of the Great Dark Spot. It received the name "Wizard's Eye" because it looks like an eye. This appearance is caused by a white cloud in the middle of the Wizard's Eye.[8] Mars has also exhibited cyclonic storms.[7] Jovian storms like the Great Red Spot are usually mistakenly named as giant hurricanes or cyclonic storms. However, this is inaccurate, as the Great Red Spot is, in fact, the inverse phenomenon, an anticyclone.[47]

[edit] References

  1. ^ "cyclone circulation". Glossary of Meteorology . American Meteorological Society. http://amsglossary.allenpress.com/glossary/search?id=cyclonic-circulation1. Retrieved on 2008-09-17. 
  2. ^ "cyclone1". Glossary of Meteorology . American Meteorological Society. http://amsglossary.allenpress.com/glossary/search?id=cyclone1. Retrieved on 2008-09-17. 
  3. ^ "BBC Weather Glossary - Cyclone". BBC Weather. http://www.bbc.co.uk/weather/weatherwise/glossary/c.shtml. Retrieved on 2006-10-24. 
  4. ^ "UCAR Glossary - Cyclone". University Corporation for Atmospheric Research. http://meted.ucar.edu/satmet/goeschan/glossary.htm#c. Retrieved on 2006-10-24. 
  5. ^ Robert Hart (2003-02-18). "Cyclone Phase Analysis and Forecast: Help Page". Florida State University Department of Meteorology. http://moe.met.fsu.edu/cyclonephase/help.html. Retrieved on 2006-10-03. 
  6. ^ Orlanski, I., 1975. A rational subdivision of scales for atmospheric processes. Bulletin of the American Meteorological Society, 56(5), 527-530.
  7. ^ a b David Brand. Colossal cyclone swirling near Martian north pole is observed by Cornell-led team on Hubble telescope. Retrieved on 2008-06-15.
  8. ^ a b NASA. Historic Hurricanes. Retrieved on 2008-06-14.
  9. ^ a b Arctic Climatology and Meteorology. Cyclogenesis. Retrieved on 2006-12-04.
  10. ^ a b c d e Atlantic Oceanographic and Meteorological Laboratory, Hurricane Research Division. "Frequently Asked Questions: What is an extra-tropical cyclone?". NOAA. http://www.aoml.noaa.gov/hrd/tcfaq/A7.html. Retrieved on 2007-03-23. 
  11. ^ a b c Forces of Nature. Tornadoes : the mesocyclone. Retrieved on 2008-06-15.
  12. ^ a b National Weather Service Key West summary of waterspout types: http://www.srh.noaa.gov/eyw/HTML/spoutweb.htm
  13. ^ Landsea, Chris and Sim Aberson. (August 13, 2004). "What is the "eye"?". Atlantic Oceanographic and Meteorological Laboratory. 
  14. ^ University of Aberdeen.The Atmosphere in Motion.]
  15. ^ Chris Landsea. Subject: D3) Why do tropical cyclones' winds rotate counter-clockwise (clockwise) in the Northern (Southern) Hemisphere? Retrieved on 2009-01-02.
  16. ^ "American Meteorological Society Glossary - Cyclogenesis". Allen Press Inc.. 2000-06. http://amsglossary.allenpress.com/glossary/search?p=1&query=cyclogenesis. Retrieved on 2006-10-12. 
  17. ^ COMET Program Flow Interaction With Topography
  18. ^ Raymond D. Menard1, and J.M. Fritsch A Mesoscale Convective Complex-Generated Inertially Stable Warm Core Vortex
  19. ^ The Physics Factbook Density of Air
  20. ^ St. Louis University What is a trowal?
  21. ^ Kerry Emanuel. Anthropogenic Effects on Tropical Cyclone Activity. Retrieved on 2008-02-25.
  22. ^ Arctic Climatology and Meteorology. "Definition for Cyclogenesis". National Snow and Ice Data Center. http://nsidc.org/arcticmet/glossary/cyclogenesis.html. Retrieved on 2006-10-20. 
  23. ^ Chris Landsea. Subject: A15) How do tropical cyclones form ? Retrieved on 2008-06-08.
  24. ^ Chris Landsea. "Climate Variability table - Tropical Cyclones". Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration. http://www.aoml.noaa.gov/hrd/Landsea/climvari/table.html. Retrieved on 2006-10-19. 
  25. ^ Roger Edwards. The Online Tornado FAQ: Frequently Asked Questions About Tornadoes. Retrieved on 2008-06-14.
  26. ^ a b Glossary of Meteorology. Polar vortex. Retrieved on 2008-06-15.
  27. ^ Halldór Björnsson. Global circulation. Retrieved on 2008-06-15.
  28. ^ Rui-Rong Chen, Don L. Boyer, and Lijun Tao. Laboratory Simulation of Atmospheric Motions in the Vicinity of Antarctica. Retrieved on 2008-06-15.
  29. ^ James E. Kloeppel. Stratosheric polar vortex influences winter cold, researchers say. Retrieved on 2008-06-15.
  30. ^ Rasmussen,E.A. and Turner, J.(2003). Polar Lows: Mesoscale Weather Systems in the Polar Regions, Cambridge University Press, Cambridge, pp 612.
  31. ^ a b Dr. DeCaria (2005-12-07). "ESCI 241 – Meteorology; Lesson 16 – Extratropical Cyclones". Department of Earth Sciences, Millersville University, Millersville, Pennsylvania. http://www.atmos.millersville.edu/~adecaria/ESCI241/esci241_lesson16_cyclones.html. Retrieved on 2006-10-21. 
  32. ^ Robert Hart and Jenni Evans (2003). "Synoptic Composites of the Extratropical Transition Lifecycle of North Atlantic TCs as Defined Within Cyclone Phase Space" (PDF). American Meteorological Society. http://ams.confex.com/ams/pdfpapers/70524.pdf. Retrieved on 2006-10-03. 
  33. ^ Ryan N. Maue. CHAPTER 3: CYCLONE PARADIGMS AND EXTRATROPICAL TRANSITION CONCEPTUALIZATIONS. Retrieved on 2008-06-15.
  34. ^ a b c Chris Landsea. Subject: A6) What is a sub-tropical cyclone? Retrieved on 2008-06-14.
  35. ^ David B. Spiegler. Reply. Retrieved on 2008-04-20.
  36. ^ R. H. Simpson and Paul J. Hebert. Atlantic Hurricane Season of 1972. Retrieved on 2008-06-14.
  37. ^ David Mark Roth (2002-02-15). "A Fifty year History of Subtropical Cyclones" (PDF). Hydrometeorological Prediction Center. http://www.hpc.ncep.noaa.gov/research/roth/Subpreprint.pdf. Retrieved on 2006-10-04. 
  38. ^ Atlantic Oceanographic and Meteorological Laboratory, Hurricane Research Division. "Frequently Asked Questions: What is a sub-tropical cyclone?". NOAA. http://www.aoml.noaa.gov/hrd/tcfaq/A6.html. Retrieved on 2006-07-25. 
  39. ^ National Hurricane Center (2005). "Glossary of NHC/TPC Terms". National Oceanic and Atmospheric Administration. http://www.nhc.noaa.gov/aboutgloss.shtml. Retrieved on 2006-11-29. 
  40. ^ James M. Shultz, Jill Russell and Zelde Espinel (2005). "Epidemiology of Tropical Cyclones: The Dynamics of Disaster, Disease, and Development". Oxford Journal. http://epirev.oxfordjournals.org/cgi/content/full/27/1/21. Retrieved on 2007-02-24. 
  41. ^ Atlantic Oceanographic and Meteorological Laboratory, Hurricane Research Division. "Frequently Asked Questions: How do tropical cyclones form?". NOAA. http://www.aoml.noaa.gov/hrd/tcfaq/A15.html. Retrieved on 2006-07-26. 
  42. ^ National Hurricane Center. Subject : C2) Doesn't the friction over land kill tropical cyclones? Retrieved on 2008-02-25.
  43. ^ National Oceanic and Atmospheric Administration. 2005 Tropical Eastern North Pacific Hurricane Outlook. Retrieved on 2006-05-02.
  44. ^ Padgett, Gary (2001). "Monthly Global Tropical Cyclone Summary for December 2000". http://australiasevereweather.com/cyclones/2001/summ0012.htm. Retrieved on 2006-03-31. 
  45. ^ "American Meteorological Society Glossary - Mesocyclone". Allen Press Inc.. 2000-06. http://amsglossary.allenpress.com/glossary/search?id=mesocyclone1. Retrieved on 2006-12-07. 
  46. ^ National Weather Service Forecast Office State College, Pennsylvania. Splitting Storm and Anti-cyclonic Rotating Mesocyclone in a Thunderstorm over Elk County July 10th, 2006. Retrieved on 2008-06-15.
  47. ^ Ellen Cohen. "Jupiter's Great Red Spot". Hayden Planetarium. http://haydenplanetarium.org/resources/ava/page/index.php?file=P0413jupispot. Retrieved on 2007-11-16. 

[edit] External links

Personal tools