H-bridge

From Wikipedia, the free encyclopedia

Jump to: navigation, search
Structure of an H-bridge (highlighted in red)

An H-bridge is an electronic circuit which enables a voltage to be applied across a load in either direction. These circuits are often used in robotics and other applications to allow DC motors to run forwards and backwards. H-bridges are available as integrated circuits, or can be built from discrete components.

A "double pole double throw" relay can generally achieve the same electrical functionality as an H-bridge (considering the usual function of the device). Though an H-bridge would be preferable where a smaller physical size is needed, high speed switching, low driving voltage, or where the wearing out of mechanical parts is undesirable.

The term "H-bridge" is derived from the typical graphical representation of such a circuit. An H-bridge is built with four switches (solid-state or mechanical). When the switches S1 and S4 (according to the first figure) are closed (and S2 and S3 are open) a positive voltage will be applied across the motor. By opening S1 and S4 switches and closing S2 and S3 switches, this voltage is reversed, allowing reverse operation of the motor.

Using the nomenclature above, the switches S1 and S2 should never be closed at the same time, as this would cause a short circuit on the input voltage source. The same applies to the switches S3 and S4. This condition is known as shoot-through.

Contents

[edit] Operation

The two basic states of an H-bridge.

The H-Bridge arrangement is generally used to reverse the polarity of the motor, but can also be used to 'brake' the motor, where the motor comes to a sudden stop, as the motor's terminals are shorted, or to let the motor 'free run' to a stop, as the motor is effectively disconnected from the circuit. The following table summarises operation.

S1 S2 S3 S4 Result
1 0 0 1 Motor moves right
0 1 1 0 Motor moves left
0 0 0 0 Motor free runs
0 1 0 1 Motor brakes
1 0 1 0 Motor brakes

(S1-4 reference to the above diagrams)

[edit] Construction

Typical solid state H-bridge

A solid-state H-bridge is typically constructed using reverse polarity devices (i.e., PNP BJTs or P-channel MOSFETs connected to the high voltage bus and NPN BJTs or N-channel MOSFETs connected to the low voltage bus).

The most efficient MOSFET designs use N-channel MOSFETs on both the high side and low side because they typically have a third of the ON resistance of P-channel MOSFETs. This requires a more complex design since the gates of the high side MOSFETs must be driven positive with respect to the DC supply rail. However, many integrated circuit MOSFET drivers include a charge pump within the device to achieve this.

Alternatively, a switch-mode DC-DC converter can be used to provide isolated ('floating') supplies to the gate drive circuitry. A multiple-output flyback converter is well-suited to this application.

Another method for driving MOSFET-bridges is the use of a specialised transformer known as a GDT (Gate Drive Transformer), which gives the isolated outputs for driving the upper FETs gates. The transformer core is usually a ferrite toroid, with 1:1 or 4:9 winding ratio. However, this method can only be used with high frequency signals. The design of the transformer is also very important, as the leakage inductance should be minimized, or cross conduction may occur. The outputs of the transformer also need to be usually clamped by zener diodes, because high voltage spikes could destroy the MOSFET gates.

A common variation of this circuit uses just the two transistors on one side of the load, similar to a class AB amplifier. Such a configuration is called a "half bridge". The half bridge is used in some switched-mode power supplies that use synchronous rectifiers and in switching amplifiers. The half H-bridge type is commonly abbreviated to "Half-H" to distinguish it from full ("Full-H") H-bridges. Adding a third 'leg' to the bridge creates a 3-phase inverter, the core of any AC motor drive.

A further variation is the half-controlled bridge, where one of the high- and low-side switching devices (on opposite sides of the bridge) are replaced with diodes. This eliminates the shoot-through failure mode, and is commonly used to drive variable/switched reluctance machines and actuators where bi-directional current flow is not required.

[edit] See also

[edit] External links

[edit] Projects

Personal tools