List of integrals of trigonometric functions

From Wikipedia, the free encyclopedia

Jump to: navigation, search
Trigonometry

History
Usage
Functions
Inverse functions
Further reading

Reference

List of identities
Exact constants
Generating trigonometric tables
CORDIC

Euclidean theory

Law of sines
Law of cosines
Law of tangents
Pythagorean theorem

Calculus

The Trigonometric integral
Trigonometric substitution
Integrals of functions
Derivatives of functions
Integrals of inverses

The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see lists of integrals. See also trigonometric integral.

In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.

Contents

[edit] Antiderivatives containing only sine

\int\sin ax\;dx = -\frac{1}{a}\cos ax+C\,\!
\int\sin^2 {ax}\;dx = \frac{x}{2} - \frac{1}{4a} \sin 2ax +C= \frac{x}{2} - \frac{1}{2a} \sin ax\cos ax +C\!
\int x\sin^2 {ax}\;dx = \frac{x^2}{4} - \frac{x}{4a} \sin 2ax - \frac{1}{8a^2} \cos 2ax +C\!
\int x^2\sin^2 {ax}\;dx = \frac{x^3}{6} - \left( \frac {x^2}{4a} - \frac{1}{8a^3} \right) \sin 2ax - \frac{x}{4a^2} \cos 2ax +C\!
\int\sin b_1x\sin b_2x\;dx = \frac{\sin((b_1-b_2)x)}{2(b_1-b_2)}-\frac{\sin((b_1+b_2)x)}{2(b_1+b_2)}+C \qquad\mbox{(for }|b_1|\neq|b_2|\mbox{)}\,\!
\int\sin^n {ax}\;dx = -\frac{\sin^{n-1} ax\cos ax}{na} + \frac{n-1}{n}\int\sin^{n-2} ax\;dx \qquad\mbox{(for }n>0\mbox{)}\,\!
\int\frac{dx}{\sin ax} = \frac{1}{a}\ln \left|\tan\frac{ax}{2}\right|+C
\int\frac{dx}{\sin^n ax} = \frac{\cos ax}{a(1-n) \sin^{n-1} ax}+\frac{n-2}{n-1}\int\frac{dx}{\sin^{n-2}ax} \qquad\mbox{(for }n>1\mbox{)}\,\!
\int x\sin ax\;dx = \frac{\sin ax}{a^2}-\frac{x\cos ax}{a}+C\,\!
\int x^n\sin ax\;dx = -\frac{x^n}{a}\cos ax+\frac{n}{a}\int x^{n-1}\cos ax\;dx \qquad\mbox{(for }n>0\mbox{)}\,\!
\int_{\frac{-a}{2}}^{\frac{a}{2}} x^2\sin^2 {\frac{n\pi x}{a}}\;dx = \frac{a^3(n^2\pi^2-6)}{24n^2\pi^2}   \qquad\mbox{(for }n=2,4,6...\mbox{)}\,\!
\int\frac{\sin ax}{x} dx = \sum_{n=0}^\infty (-1)^n\frac{(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!} +C\,\!
\int\frac{\sin ax}{x^n} dx = -\frac{\sin ax}{(n-1)x^{n-1}} + \frac{a}{n-1}\int\frac{\cos ax}{x^{n-1}} dx\,\!
\int\frac{dx}{1\pm\sin ax} = \frac{1}{a}\tan\left(\frac{ax}{2}\mp\frac{\pi}{4}\right)+C
\int\frac{x\;dx}{1+\sin ax} = \frac{x}{a}\tan\left(\frac{ax}{2} - \frac{\pi}{4}\right)+\frac{2}{a^2}\ln\left|\cos\left(\frac{ax}{2}-\frac{\pi}{4}\right)\right|+C
\int\frac{x\;dx}{1-\sin ax} = \frac{x}{a}\cot\left(\frac{\pi}{4} - \frac{ax}{2}\right)+\frac{2}{a^2}\ln\left|\sin\left(\frac{\pi}{4}-\frac{ax}{2}\right)\right|+C
\int\frac{\sin ax\;dx}{1\pm\sin ax} = \pm x+\frac{1}{a}\tan\left(\frac{\pi}{4}\mp\frac{ax}{2}\right)+C

[edit] Antiderivatives containing only cosine

\int\cos ax\;dx = \frac{1}{a}\sin ax+C\,\!
\int\cos^n ax\;dx = \frac{\cos^{n-1} ax\sin ax}{na} + \frac{n-1}{n}\int\cos^{n-2} ax\;dx \qquad\mbox{(for }n>0\mbox{)}\,\!
\int x\cos ax\;dx = \frac{\cos ax}{a^2} + \frac{x\sin ax}{a}+C\,\!
\int\cos^2 {ax}\;dx = \frac{x}{2} + \frac{1}{4a} \sin 2ax +C = \frac{x}{2} + \frac{1}{2a} \sin ax\cos ax +C\!
\int x^2\cos^2 {ax}\;dx = \frac{x^3}{6} + \left( \frac {x^2}{4a} - \frac{1}{8a^3} \right) \sin 2ax + \frac{x}{4a^2} \cos 2ax +C\!
\int x^n\cos ax\;dx = \frac{x^n\sin ax}{a} - \frac{n}{a}\int x^{n-1}\sin ax\;dx\,\!
\int_{\frac{-a}{2}}^{\frac{a}{2}} x^2\cos^2 {\frac{n\pi x}{a}}\;dx = \frac{a^3(n^2\pi^2-6)}{24n^2\pi^2}   \qquad\mbox{(for }n=1,3,5...\mbox{)}\,\!
\int\frac{\cos ax}{x} dx = \ln|ax|+\sum_{k=1}^\infty (-1)^k\frac{(ax)^{2k}}{2k\cdot(2k)!}+C\,\!
\int\frac{\cos ax}{x^n} dx = -\frac{\cos ax}{(n-1)x^{n-1}}-\frac{a}{n-1}\int\frac{\sin ax}{x^{n-1}} dx \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{dx}{\cos ax} = \frac{1}{a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C
\int\frac{dx}{\cos^n ax} = \frac{\sin ax}{a(n-1) \cos^{n-1} ax} + \frac{n-2}{n-1}\int\frac{dx}{\cos^{n-2} ax} \qquad\mbox{(for }n>1\mbox{)}\,\!
\int\frac{dx}{1+\cos ax} = \frac{1}{a}\tan\frac{ax}{2}+C\,\!
\int\frac{dx}{1-\cos ax} = -\frac{1}{a}\cot\frac{ax}{2}+C\,\!
\int\frac{x\;dx}{1+\cos ax} = \frac{x}{a}\tan\frac{ax}{2} + \frac{2}{a^2}\ln\left|\cos\frac{ax}{2}\right|+C
\int\frac{x\;dx}{1-\cos ax} = -\frac{x}{a}\cot\frac{ax}{2}+\frac{2}{a^2}\ln\left|\sin\frac{ax}{2}\right|+C
\int\frac{\cos ax\;dx}{1+\cos ax} = x - \frac{1}{a}\tan\frac{ax}{2}+C\,\!
\int\frac{\cos ax\;dx}{1-\cos ax} = -x-\frac{1}{a}\cot\frac{ax}{2}+C\,\!
\int\cos a_1x\cos a_2x\;dx = \frac{\sin(a_1-a_2)x}{2(a_1-a_2)}+\frac{\sin(a_1+a_2)x}{2(a_1+a_2)}+C \qquad\mbox{(for }|a_1|\neq|a_2|\mbox{)}\,\!

[edit] Antiderivatives containing only tangent

\int\tan ax\;dx = -\frac{1}{a}\ln|\cos ax|+C = \frac{1}{a}\ln|\sec ax|+C\,\!
\int\tan^n ax\;dx = \frac{1}{a(n-1)}\tan^{n-1} ax-\int\tan^{n-2} ax\;dx \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{dx}{q \tan ax + p} = \frac{1}{p^2 + q^2}(px + \frac{q}{a}\ln|q\sin ax + p\cos ax|)+C \qquad\mbox{(for }p^2 + q^2\neq 0\mbox{)}\,\!


\int\frac{dx}{\tan ax} = \frac{1}{a}\ln|\sin ax|+C\,\!
\int\frac{dx}{\tan ax + 1} = \frac{x}{2} + \frac{1}{2a}\ln|\sin ax + \cos ax|+C\,\!
\int\frac{dx}{\tan ax - 1} = -\frac{x}{2} + \frac{1}{2a}\ln|\sin ax - \cos ax|+C\,\!
\int\frac{\tan ax\;dx}{\tan ax + 1} = \frac{x}{2} - \frac{1}{2a}\ln|\sin ax + \cos ax|+C\,\!
\int\frac{\tan ax\;dx}{\tan ax - 1} = \frac{x}{2} + \frac{1}{2a}\ln|\sin ax - \cos ax|+C\,\!

[edit] Antiderivatives containing only secant

\int \sec{ax} \, dx = \frac{1}{a}\ln{\left| \sec{ax} + \tan{ax}\right|}+C
\int \sec^n{ax} \, dx = \frac{\sec^{n-1}{ax} \sin {ax}}{a(n-1)} \,+\, \frac{n-2}{n-1}\int \sec^{n-2}{ax} \, dx \qquad \mbox{ (for }n \ne 1\mbox{)}\,\!
\int \sec^n{x} \, dx = \frac{\sec^{n-2}{x}\tan{x}}{n-1} \,+\, \frac{n-2}{n-1}\int \sec^{n-2}{x}\,dx[1]
\int \frac{dx}{\sec{x} + 1} = x - \tan{\frac{x}{2}}+C

[edit] Antiderivatives containing only cosecant

\int \csc{ax} \, dx = \frac{1}{a}\ln{\left| \csc{ax} - \cot{ax}\right|}+C
\int \csc^2{x} \, dx = -\cot{x}+C
\int \csc^n{ax} \, dx = -\frac{\csc^{n-1}{ax} \cos{ax}}{a(n-1)} \,+\, \frac{n-2}{n-1}\int \csc^{n-2}{ax} \, dx \qquad \mbox{ (for }n \ne 1\mbox{)}\,\!

[edit] Antiderivatives containing only cotangent

\int\cot ax\;dx = \frac{1}{a}\ln|\sin ax|+C\,\!
\int\cot^n ax\;dx = -\frac{1}{a(n-1)}\cot^{n-1} ax - \int\cot^{n-2} ax\;dx \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{dx}{1 + \cot ax} = \int\frac{\tan ax\;dx}{\tan ax+1}\,\!
\int\frac{dx}{1 - \cot ax} = \int\frac{\tan ax\;dx}{\tan ax-1}\,\!

[edit] Antiderivatives containing both sine and cosine

\int\frac{dx}{\cos ax\pm\sin ax} = \frac{1}{a\sqrt{2}}\ln\left|\tan\left(\frac{ax}{2}\pm\frac{\pi}{8}\right)\right|+C
\int\frac{dx}{(\cos ax\pm\sin ax)^2} = \frac{1}{2a}\tan\left(ax\mp\frac{\pi}{4}\right)+C
\int\frac{dx}{(\cos x + \sin x)^n} = \frac{1}{n-1}\left(\frac{\sin x - \cos x}{(\cos x + \sin x)^{n - 1}} - 2(n - 2)\int\frac{dx}{(\cos x + \sin x)^{n-2}} \right)
\int\frac{\cos ax\;dx}{\cos ax + \sin ax} = \frac{x}{2} + \frac{1}{2a}\ln\left|\sin ax + \cos ax\right|+C
\int\frac{\cos ax\;dx}{\cos ax - \sin ax} = \frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax - \cos ax\right|+C
\int\frac{\sin ax\;dx}{\cos ax + \sin ax} = \frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax + \cos ax\right|+C
\int\frac{\sin ax\;dx}{\cos ax - \sin ax} = -\frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax - \cos ax\right|+C
\int\frac{\cos ax\;dx}{\sin ax(1+\cos ax)} = -\frac{1}{4a}\tan^2\frac{ax}{2}+\frac{1}{2a}\ln\left|\tan\frac{ax}{2}\right|+C
\int\frac{\cos ax\;dx}{\sin ax(1+-\cos ax)} = -\frac{1}{4a}\cot^2\frac{ax}{2}-\frac{1}{2a}\ln\left|\tan\frac{ax}{2}\right|+C
\int\frac{\sin ax\;dx}{\cos ax(1+\sin ax)} = \frac{1}{4a}\cot^2\left(\frac{ax}{2}+\frac{\pi}{4}\right)+\frac{1}{2a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C
\int\frac{\sin ax\;dx}{\cos ax(1-\sin ax)} = \frac{1}{4a}\tan^2\left(\frac{ax}{2}+\frac{\pi}{4}\right)-\frac{1}{2a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C
\int\sin ax\cos ax\;dx = \frac{1}{2a}\sin^2 ax +C\,\!
\int\sin a_1x\cos a_2x\;dx = -\frac{\cos(a_1+a_2)x}{2(a_1+a_2)}-\frac{\cos(a_1-a_2)x}{2(a_1-a_2)} +C\qquad\mbox{(for }|a_1|\neq|a_2|\mbox{)}\,\!
\int\sin^n ax\cos ax\;dx = \frac{1}{a(n+1)}\sin^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!
\int\sin ax\cos^n ax\;dx = -\frac{1}{a(n+1)}\cos^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!
\int\sin^n ax\cos^m ax\;dx = -\frac{\sin^{n-1} ax\cos^{m+1} ax}{a(n+m)}+\frac{n-1}{n+m}\int\sin^{n-2} ax\cos^m ax\;dx  \qquad\mbox{(for }m,n>0\mbox{)}\,\!
also: \int\sin^n ax\cos^m ax\;dx = \frac{\sin^{n+1} ax\cos^{m-1} ax}{a(n+m)} + \frac{m-1}{n+m}\int\sin^n ax\cos^{m-2} ax\;dx \qquad\mbox{(for }m,n>0\mbox{)}\,\!
\int\frac{dx}{\sin ax\cos ax} = \frac{1}{a}\ln\left|\tan ax\right|+C
\int\frac{dx}{\sin ax\cos^n ax} = \frac{1}{a(n-1)\cos^{n-1} ax}+\int\frac{dx}{\sin ax\cos^{n-2} ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{dx}{\sin^n ax\cos ax} = -\frac{1}{a(n-1)\sin^{n-1} ax}+\int\frac{dx}{\sin^{n-2} ax\cos ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\sin ax\;dx}{\cos^n ax} = \frac{1}{a(n-1)\cos^{n-1} ax} +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\sin^2 ax\;dx}{\cos ax} = -\frac{1}{a}\sin ax+\frac{1}{a}\ln\left|\tan\left(\frac{\pi}{4}+\frac{ax}{2}\right)\right|+C
\int\frac{\sin^2 ax\;dx}{\cos^n ax} = \frac{\sin ax}{a(n-1)\cos^{n-1}ax}-\frac{1}{n-1}\int\frac{dx}{\cos^{n-2}ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\sin^n ax\;dx}{\cos ax} = -\frac{\sin^{n-1} ax}{a(n-1)} + \int\frac{\sin^{n-2} ax\;dx}{\cos ax} \qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\sin^n ax\;dx}{\cos^m ax} = \frac{\sin^{n+1} ax}{a(m-1)\cos^{m-1} ax}-\frac{n-m+2}{m-1}\int\frac{\sin^n ax\;dx}{\cos^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!
also: \int\frac{\sin^n ax\;dx}{\cos^m ax} = -\frac{\sin^{n-1} ax}{a(n-m)\cos^{m-1} ax}+\frac{n-1}{n-m}\int\frac{\sin^{n-2} ax\;dx}{\cos^m ax} \qquad\mbox{(for }m\neq n\mbox{)}\,\!
also: \int\frac{\sin^n ax\;dx}{\cos^m ax} = \frac{\sin^{n-1} ax}{a(m-1)\cos^{m-1} ax}-\frac{n-1}{m-1}\int\frac{\sin^{n-2} ax\;dx}{\cos^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!
\int\frac{\cos ax\;dx}{\sin^n ax} = -\frac{1}{a(n-1)\sin^{n-1} ax} +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!
\int\frac{\cos^2 ax\;dx}{\sin ax} = \frac{1}{a}\left(\cos ax+\ln\left|\tan\frac{ax}{2}\right|\right) +C
\int\frac{\cos^2 ax\;dx}{\sin^n ax} = -\frac{1}{n-1}\left(\frac{\cos ax}{a\sin^{n-1} ax)}+\int\frac{dx}{\sin^{n-2} ax}\right) \qquad\mbox{(for }n\neq 1\mbox{)}
\int\frac{\cos^n ax\;dx}{\sin^m ax} = -\frac{\cos^{n+1} ax}{a(m-1)\sin^{m-1} ax} - \frac{n-m-2}{m-1}\int\frac{\cos^n ax\;dx}{\sin^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!
also: \int\frac{\cos^n ax\;dx}{\sin^m ax} = \frac{\cos^{n-1} ax}{a(n-m)\sin^{m-1} ax} + \frac{n-1}{n-m}\int\frac{\cos^{n-2} ax\;dx}{\sin^m ax} \qquad\mbox{(for }m\neq n\mbox{)}\,\!
also: \int\frac{\cos^n ax\;dx}{\sin^m ax} = -\frac{\cos^{n-1} ax}{a(m-1)\sin^{m-1} ax} - \frac{n-1}{m-1}\int\frac{\cos^{n-2} ax\;dx}{\sin^{m-2} ax} \qquad\mbox{(for }m\neq 1\mbox{)}\,\!

[edit] Antiderivatives containing both sine and tangent

\int \sin ax \tan ax\;dx = \frac{1}{a}(\ln|\sec ax + \tan ax| - \sin ax)+C\,\!
\int\frac{\tan^n ax\;dx}{\sin^2 ax} = \frac{1}{a(n-1)}\tan^{n-1} (ax) +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!

[edit] Antiderivatives containing both cosine and tangent

\int\frac{\tan^n ax\;dx}{\cos^2 ax} = \frac{1}{a(n+1)}\tan^{n+1} ax +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!

[edit] Antiderivatives containing both sine and cotangent

\int\frac{\cot^n ax\;dx}{\sin^2 ax} = \frac{1}{a(n+1)}\cot^{n+1} ax  +C\qquad\mbox{(for }n\neq -1\mbox{)}\,\!

[edit] Antiderivatives containing both cosine and cotangent

\int\frac{\cot^n ax\;dx}{\cos^2 ax} = \frac{1}{a(1-n)}\tan^{1-n} ax +C\qquad\mbox{(for }n\neq 1\mbox{)}\,\!


[edit] Antiderivatives with symmetric limits

\int_{{-c}}^{{c}}\sin {x}\;dx = 0 \!
\int_{{-c}}^{{c}}\cos {x}\;dx = 2\int_{{0}}^{{c}}\cos {x}\;dx = 2\int_{{-c}}^{{0}}\cos {x}\;dx = 2\sin {c} \!
\int_{{-c}}^{{c}}\tan {x}\;dx = 0 \!
  1. ^ Stewart, James. Calculus: Early Transcendentals, 6th Edition. Thomson: 2008
Personal tools