List of states of matter

From Wikipedia, the free encyclopedia

Jump to: navigation, search

This is a list of the different states of matter, including the more exotic. States of matter are generally distinguished by pressure and temperature conditions, transitioning to other phases as these conditions change to favor their existence; for example, freezing transitions to melting with an increase in temperature.

The list is ordered roughly in terms of increasing energy density.

  • Low-energy states:
    • Quantum Hall state: A state that gives rise to quantized Hall voltage measured in the direction perpendicular to the current flow.
    • Quantum spin Hall state: a theoretical phase that may pave the way for the development of electronic devices that dissipate less energy and generate less heat. This is a derivation of the Quantum Hall state of matter.
    • Bose–Einstein condensate: a phase in which a large number of bosons all inhabit the same quantum state, in effect becoming one single wave/particle.
    • Fermionic condensate: Similar to the Bose-Einstein condensate but composed of fermions. The Pauli exclusion principle prevents fermions from entering the same quantum state, but by pairing up two fermions can behave as a boson and the pairs can then enter the same quantum state without restrictions.
    • Superfluid: A phase achieved by a few cryogenic liquids at extreme temperature where they become able to flow without friction. A superfluid can flow up the side of an open container and down the outside. Placing a superfluid in a spinning container will result in quantized vortices.
    • Supersolid: similar to a superfluid, a supersolid is able to move without friction but retains a rigid shape.
  • Solid: A solid holds a rigid shape without a container.
    • Amorphous solid: A solid in which there is no long-range order of the positions of the atoms.
    • Crystalline solid: A solid in which the constituent atoms, molecules, or ions are packed in a regularly ordered, repeating pattern.
      • Plastic crystal: A molecular solid with long-range positional order but with constituent molecules retaining rotational freedom.
  • String-net liquid: Atoms in this state have apparently unstable arrangement, like a liquid, but are still consistent in overall pattern, like a solid.
  • Liquid: A mostly non-compressible fluid. Able to conform to the shape of its container but retaining a (nearly) constant volume independent of pressure.
    • Liquid crystal: Properties intermediate between liquids and crystals. Generally, able to flow like a liquid but exhibiting long-range order.
  • Gas: A compressible fluid. Not only will a gas conform to the shape of its container but it will also expand to fill the container.
  • Supercritical fluid: At sufficiently high temperatures and pressures the distinction between liquid and gas disappears.
  • Plasma: free charged particles, usually in equal numbers, such as ions and electrons. Unlike gases, plasmas may self-generate magnetic fields and electric currents, and respond strongly and collectively to electromagnetic forces.
  • Degenerate matter: matter under very high pressure, supported by the Pauli exclusion principle.
    • Electron-degenerate matter: found in the crust of white dwarf stars. Electrons remain bound to atoms but are able to transfer to adjacent atoms.
    • Neutron-degenerate matter: found in neutron stars. Vast gravitational pressure compresses atoms so hard that the electrons are forced to combine with protons via inverse beta-decay, resulting in a superdense conglomeration of neutrons. (Normally free neutrons outside an atomic nucleus will decay with a half life of just under 15 minutes, but in a neutron star, as in the nucleus of an atom, other effects stabilize the neutrons.)
    • Strange matter: Also known as quark matter, it may exist inside some particularly large neutron stars. May be stable at lower energy states once formed.
  • Very high energy states:

The gravitational singularity predicted by general relativity to exist at the centre of a black hole is not a phase of matter; it is not a material object at all (although the mass-energy of matter contributed to its creation), but rather a region where the known laws of physics have ceased to hold.


Personal tools