Euclid
From Wikipedia, the free encyclopedia
Editing of this article by new or unregistered users is currently disabled. See the protection policy and protection log for more details. If you cannot edit this article and you wish to make a change, you can request an edit, discuss changes on the talk page, request unprotection, log in, or create an account. |
This article includes a list of references or external links, but its sources remain unclear because it lacks inline citations. Please improve this article by introducing more precise citations where appropriate. (April 2008) |
Euclid | |
Born | fl. 300 BC |
---|---|
Residence | Alexandria, Egypt |
Ethnicity | Greek |
Fields | Mathematics |
Known for | Euclidean geometry Euclid's Elements |
Euclid (Greek: Εὐκλείδης — Eukleídēs), fl. 300 BC, also known as Euclid of Alexandria, was a Greek mathematician and is often referred to as the Father of Geometry. He was active in Alexandria during the reign of Ptolemy I (323 BC – 283 BC). His work Elements is the most successful textbook in the history of mathematics.[1][2] In it, the principles of what is now called Euclidean geometry were deduced from a small set of axioms. Euclid also wrote works on perspective, conic sections, spherical geometry, number theory and rigor.
Contents |
Biographical knowledge
Little is known about Euclid other than his writings. The biographical information that we do have comes largely from commentaries by Proclus and Pappus of Alexandria. Euclid was active at the great Library of Alexandria and may have studied at Plato's Academy in Greece. The date and place of Euclid's birth and the date and circumstances of his death are unknown.
Some writers in the Middle Ages confused him with Euclid of Megara, a Greek Socratic philosopher who lived approximately one century earlier.[3]
The Elements
Although many of the results in Elements originated with earlier mathematicians, one of Euclid's accomplishments was to present them in a single, logically coherent framework, making it easy to use and easy to reference, including a system of rigorous mathematical proofs that remains the basis of mathematics 23 centuries later.[citation needed]
Although best-known for its geometric results, the Elements also includes number theory. It considers the connection between perfect numbers and Mersenne primes, the infinitude of prime numbers, Euclid's lemma on factorization (which leads to the fundamental theorem of arithmetic on uniqueness of prime factorizations), and the Euclidean algorithm for finding the greatest common divisor of two numbers.
The geometrical system described in the Elements was long known simply as geometry, and was considered to be the only geometry possible. Today, however, that system is often referred to as Euclidean geometry to distinguish it from other so-called Non-Euclidean geometries that mathematicians discovered in the 19th century.
Other works
In addition to the Elements, at least five works of Euclid have survived to the present day. They follow the same logical structure as Elements, with definitions and proved propositions.
- Data deals with the nature and implications of "given" information in geometrical problems; the subject matter is closely related to the first four books of the Elements.
- On Divisions of Figures, which survives only partially in Arabic translation, concerns the division of geometrical figures into two or more equal parts or into parts in given ratios. It is similar to a third century AD work by Heron of Alexandria.
- Catoptrics, which concerns the mathematical theory of mirrors, particularly the images formed in plane and spherical concave mirrors. The attribution to Euclid is doubtful. Its author may have been Theon of Alexandria.
- Phenomena, a treatise on spherical astronomy, survives in Greek; it is quite similar to On the Moving Sphere by Autolycus of Pitane, who flourished around 310 BC.
- Optics is the earliest surviving Greek treatise on perspective. In its definitions Euclid follows the Platonic tradition that vision is caused by discrete rays which emanate from the eye. One important definition is the fourth: "Things seen under a greater angle appear greater, and those under a lesser angle less, while those under equal angles appear equal." In the 36 propositions that follow, Euclid relates the apparent size of an object to its distance from the eye and investigates the apparent shapes of cylinders and cones when viewed from different angles. Proposition 45 is interesting, proving that for any two unequal magnitudes, there is a point from which the two appear equal. Pappus believed these results to be important in astronomy and included Euclid's Optics, along with his Phaenomena, in the Little Astronomy, a compendium of smaller works to be studied before the Syntaxis (Almagest) of Claudius Ptolemy.
Other works are credibly attributed to Euclid, but have been lost.
- Conics was a work on conic sections that was later extended by Apollonius of Perga into his famous work on the subject. It is likely that the first four books of Apollonius's work come directly from Euclid. According to Pappus, "Apollonius, having completed Euclid's four books of conics and added four others, handed down eight volumes of conics." The Conics of Apollonius quickly supplanted the former work, and by the time of Pappus, Euclid's work was already lost.
- Porisms might have been an outgrowth of Euclid's work with conic sections, but the exact meaning of the title is controversial.
- Pseudaria, or Book of Fallacies, was an elementary text about errors in reasoning.
- Surface Loci concerned either loci (sets of points) on surfaces or loci which were themselves surfaces; under the latter interpretation, it has been hypothesized that the work might have dealt with quadric surfaces.
- Several works on mechanics are attributed to Euclid by Arabic sources. On the Heavy and the Light contains, in nine definitions and five propositions, Aristotelian notions of moving bodies and the concept of specific gravity. On the Balance treats the theory of the lever in a similarly Euclidean manner, containing one definition, two axioms, and four propositions. A third fragment, on the circles described by the ends of a moving lever, contains four propositions. These three works complement each other in such a way that it has been suggested that they are remnants of a single treatise on mechanics written by Euclid.
See also
- Axiomatic method
- A lesson on formal proofs, from Wikiversity
- Euclid's orchard
- Euclidean relation
References
Notes
- ^ Ball, W.W. Rouse (1960). A Short Account of the History of Mathematics (4th ed.). New York: Dover Publications. pp. 50–62. ISBN 0-486-20630-0.
- ^ Boyer, Carl B. (1991). A History of Mathematics (2nd ed.). John Wiley & Sons. pp. 100–19. ISBN 0471543977.
- ^ Heath (1956) vol. I, p. 4
- ^ Bill Casselman. "One of the Oldest Extant Diagrams from Euclid". University of British Columbia. http://www.math.ubc.ca/~cass/Euclid/papyrus/papyrus.html. Retrieved on 2008-09-26.
Bibliography
- "Euclid (Greek mathematician)". Encyclopædia Britannica, Inc. 2008. http://www.britannica.com/EBchecked/topic/194880/Euclid. Retrieved on 2008-04-18.
- Artmann, Benno (1999). Euclid: The Creation of Mathematics. New York: Springer. ISBN 0387984232.
- Ball, W.W. Rouse (1960) [1908]. A Short Account of the History of Mathematics (4th ed.). Dover Publications. pp. p.50–62. ISBN 0486206300.
- Boyer, Carl B. (1991). A History of Mathematics (2nd ed.). John Wiley & Sons, Inc.. ISBN 0471543977.
- Heath, Thomas (1956) [1908]. The Thirteen Books of Euclid's Elements. vol.1. Dover Publications. ISBN 0486600882.
- Heath, Thomas L. (1981). A History of Greek Mathematics, 2 Vols. New York: Dover Publications. ISBN 0486240738 / ISBN 0486240746.
- Kline, Morris (1980). Mathematics: The Loss of Certainty. Oxford: Oxford University Press. ISBN 019502754X.
- O'Connor, John J.; Robertson, Edmund F., "Euclid", MacTutor History of Mathematics archive
External links
Wikiquote has a collection of quotations related to: Euclid |
Wikimedia Commons has media related to: Euclid |
- MacTutor Biography
- Euclid's elements, All thirteen books, with interactive diagrams using Java. Clark University
- Euclid's elements, with the original Greek and an English translation on facing pages (includes PDF version for printing). University of Texas.
- Euclid's elements, All thirteen books, in several languages as Spanish, Catalan, English, German, Portuguese, Arabic, Italian, Russian and Chinese .
- Elementa Geometriae 1482, Venice. From Rare Book Room.
- Elementa 888 AD, Byzantine. From Rare Book Room.
- Euclid biography by Charlene Douglass With extensive bibliography.
- Texts on Ancient Mathematics and Mathematical Astronomy PDF scans (Note: many are very large files). Includes editions and translations of Euclid's Elements, Data, and Optica, Proclus's Commentary on Euclid, and other historical sources.
|
Persondata | |
---|---|
NAME | Euclid |
ALTERNATIVE NAMES | Euclid of Alexandria; Εὐκλείδης |
SHORT DESCRIPTION | Greek mathematician |
DATE OF BIRTH | 325 BCE |
PLACE OF BIRTH | |
DATE OF DEATH | 265 BCE |
PLACE OF DEATH |