Neurotransmitter

From Wikipedia, the free encyclopedia

Jump to: navigation, search
Chemical structure of D-aspartic acid, a common amino acid neurotransmitter.

Neurotransmitters are chemicals which relay, amplify and modulate signals between a neuron and another cell.[1] Neurotransmitters are packaged into vesicles that cluster beneath the membrane on the presynaptic side of a synapse, and are released into the synaptic cleft, where they bind to receptors in the membrane on the postsynaptic side of the synapse. Release of neurotransmitters usually follows arrival of an action potential at the synapse, but may follow graded electrical potentials. Low level "baseline" release also occurs without electrical stimulation.

Contents

[edit] Identifying neurotransmitters

Some of the properties that define a chemical as a neurotransmitter are difficult to test experimentally. For example, it is easy using an electron microscope to recognize vesicles on the presynaptic side of a synapse, but it may not be easy to determine directly what chemical is packed into them. The difficulties led to many historical controversies over whether a given chemical was or was not clearly established as a transmitter. In an effort to give some structure to the arguments, neurochemists worked out a set of experimentally tractable rules. According to the prevailing beliefs of the 1960s, a chemical can be classified as a neurotransmitter if it meets the following conditions:

  • There are precursors and/or synthesis enzymes located in the presynaptic side of the synapse.
  • The chemical is present in the presynaptic element.
  • It is available in sufficient quantity in the presynaptic neuron to affect the postsynaptic neuron;
  • There are postsynaptic receptors and the chemical is able to bind to them.
  • A biochemical mechanism for inactivation is present.

Modern advances in pharmacology, genetics, and chemical neuroanatomy have greatly reduced the importance of these rules. A series of experiments that may have taken several years in the 1960s can now be done, with much better precision, in a few months. Thus, it is unusual nowadays for the identification of a chemical as a neurotransmitter to remain controversial for very long.

[edit] Types of neurotransmitters

There are many different ways to classify neurotransmitters. Dividing them into amino acids, peptides, and monoamines is sufficient for some purposes.

Approximately ten "small-molecule neurotransmitters" are known:

In addition, over 50 neuroactive peptides have been found, and new ones are discovered on a regular basis. Many of these are "co-released" along with a small-molecule transmitter, but in some cases a peptide is the primary transmitter at a synapse.

Single ions, such as synaptically released zinc, are also considered neurotransmitters by some, as are a few gaseous molecules such as nitric oxide (NO) and carbon monoxide (CO). These are not neurotransmitters by the strict definition, however, because although they have all been shown experimentally to be released by presynaptic terminals in an activity-dependent way, they are not packaged into vesicles.

Not all neurotransmitters are equally important. By far the most prevalent transmitter is glutamate, which is used at well over 90% of the synapses in the human brain. The next most prevalent is GABA, which is used at more than 90% of the synapses that don't use glutamate. Note, however, that even though other transmitters are used in far fewer synapses, they may be very important functionally: the great majority of psychoactive drugs exert their effects by altering the actions of some neurotransmitter system, and the great majority of these act through transmitters other than glutamate or GABA. Addictive drugs such as cocaine, amphetamine, and heroin, for example, exert their effects primarily on the dopamine system.

[edit] Excitatory and inhibitory

Some neurotransmitters are commonly described as "excitatory" or "inhibitory". The only thing that a neurotransmitter does directly is to activate one or more types of receptors. The effect on the postsynaptic cell depends entirely on the properties of the receptors. It so happens that for some neurotransmitters (for example, glutamate), the most important receptors all have excitatory effects: that is, they increase the probability that the target cell will fire an action potential. For other neurotransmitters (such as GABA), the most important receptors all have inhibitory effects. There are, however, other important neurotransmitters, such as acetylcholine, for which both excitatory and inhibitory receptors exist; and there are some types of receptors that activate complex metabolic pathways in the postsynaptic cell to produce effects that cannot appropriately be called either excitatory or inhibitory. Thus, it is widely understood to be an abuse of language to call a neurotransmitter excitatory or inhibitory—nevertheless it is so convenient to call glutamate excitatory and GABA inhibitory that this usage is seen very frequently.

[edit] Actions

As explained above, the only direct action of a neurotransmitter is to activate a receptor. Therefore, the effects of a neurotransmitter system depend on the connections of the neurons that use the transmitter, and the chemical properties of the receptors that the transmitter binds to.

Here are a few examples of important neurotransmitter actions:

  • Glutamate is used at the great majority of fast excitatory synapses in the brain and spinal cord. It is also used at most synapses that are "modifiable", i.e. capable of increasing or decreasing in strength. Modifiable synapses are thought to be the main memory-storage elements in the brain.
  • GABA is used at the great majority of fast inhibitory synapses in virtually every part of the brain. Many sedative/tranquilizing drugs act by enhancing the effects of GABA. Correspondingly glycine is the inhibitory transmitter in the spinal cord.
  • Acetylcholine is distinguished as the transmitter at the neuromuscular junction connecting motor nerves to muscles. The paralytic arrow-poison curare acts by blocking transmission at these synapses. Acetylcholine also operates in many regions of the brain, but using different types of receptors.
  • Dopamine has a number of important functions in the brain. It plays a critical role in the reward system, but dysfunction of the dopamine system is also implicated in Parkinson's Disease and schizophrenia.
  • Serotonin has a number of important functions that are difficult to describe in a unified way, including regulation of mood, sleep/wake cycles, and body temperature. It is released during sunny weather, and also when eating chocolate or taking Ecstasy (MDMA).
  • Substance P undecapeptide responsible for transmission of pain from certain sensory neurons to the central nervous system.

Neurons expressing certain types of neurotransmitters sometimes form distinct systems, where activation of the system affects large volumes of the brain, called volume transmission. The major neurotransmitter systems are the noradrenaline (norepinephrine) system, the dopamine system, the serotonin system and the cholinergic system.

Drugs targeting the neurotransmitter of such systems affects the whole system; this fact explains the mode of action of many drugs. Cocaine, for example, blocks the reentering of dopamine back into the presynaptic neuron, leaving these neurotransmitters in the synaptic gap longer. Since the dopamine is in the synapse longer, the neurotransmitter rapidly hit the receptors on the postsynaptic neuron cell, and therefore causing happiness. Excess intake of cocaine can lead to physical addiction. The physical addiction of cocaine is when the neurotransmitters stay in the synapse so long , the body removes some receptors from the postsynaptic neuron. After the effects of the drug wear off, the person usually feels unhappy, because now the neurotransmitters are less likely to hit the receptor since the body removed many of them during the drug intake. Prozac is a selective serotonin reuptake inhibitor (SSRI), hence potentiating the effect of naturally released serotonin. AMPT prevents the conversion of tyrosine to L-DOPA, the precursor to dopamine; reserpine prevents dopamine storage within vesicles; and deprenyl inhibits monoamine oxidase (MAO)-B and thus increases dopamine levels.

Diseases may affect specific neurotransmitter systems. For example, Parkinson's disease is at least in part related to failure of dopaminergic cells in deep-brain nuclei, for example the substantia nigra. Treatments potentiating the effect of dopamine precursors have been proposed and effected, with moderate success.

A brief comparison of the major neurotransmitter systems follows:

Neurotransmitter systems
System Origin [2] Effects[2]
Noradrenaline system locus coeruleus
  • arousal
  • reward
Lateral tegmental field
Dopamine system dopamine pathways: motor system, reward, cognition, endocrine, nausea
Serotonin system caudal dorsal raphe nucleus Increase (introversion), mood, satiety, body temperature and sleep, while decreasing nociception.
rostral dorsal raphe nucleus
Cholinergic system pontomesencephalotegmental complex
basal optic nucleus of Meynert
medial septal nucleus

[edit] Common neurotransmitters

Category Name Abbreviation Metabotropic Ionotropic
Small: Amino acids Aspartate - -
Neuropeptides N-Acetylaspartylglutamate NAAG Metabotropic glutamate receptors; selective agonist of mGluR3 -
Small: Amino acids Glutamate (glutamic acid) Glu Metabotropic glutamate receptor NMDA receptor, Kainate receptor, AMPA receptor
Small: Amino acids Gamma-aminobutyric acid GABA GABAB receptor GABAA, GABAC
Small: Amino acids Glycine Gly - Glycine receptor
Small: Acetylcholine Acetylcholine Ach Muscarinic acetylcholine receptor Nicotinic acetylcholine receptor
Small: Monoamine (Phe/Tyr) Dopamine DA Dopamine receptor -
Small: Monoamine (Phe/Tyr) Norepinephrine (noradrenaline) NE Adrenergic receptor -
Small: Monoamine (Phe/Tyr) Epinephrine (adrenaline) Epi Adrenergic receptor -
Small: Monoamine (Phe/Tyr) Octopamine - -
Small: Monoamine (Phe/Tyr) Tyramine -
Small: Monoamine (Trp) Serotonin (5-hydroxytryptamine) 5-HT Serotonin receptor, all but 5-HT3 5-HT3
Small: Monoamine (Trp) Melatonin Mel Melatonin receptor -
Small: Monoamine (His) Histamine H Histamine receptor -
PP: Gastrins Gastrin - -
PP: Gastrins Cholecystokinin CCK Cholecystokinin receptor -
PP: Neurohypophyseals Vasopressin AVP Vasopressin receptor -
PP: Neurohypophyseals Oxytocin Oxytocin receptor -
PP: Neurohypophyseals Neurophysin I - -
PP: Neurohypophyseals Neurophysin II - -
PP: Neuropeptide Y Neuropeptide Y NY Neuropeptide Y receptor -
PP: Neuropeptide Y Pancreatic polypeptide PP - -
PP: Neuropeptide Y Peptide YY PYY - -
PP: Opioids Corticotropin (adrenocorticotropic hormone) ACTH Corticotropin receptor -
PP: Opioids Dynorphin - -
PP: Opioids Endorphin - -
PP: Opioids Enkephaline - -
PP: Secretins Secretin Secretin receptor -
PP: Secretins Motilin Motilin receptor -
PP: Secretins Glucagon Glucagon receptor -
PP: Secretins Vasoactive intestinal peptide VIP Vasoactive intestinal peptide receptor -
PP: Secretins Growth hormone-releasing factor GRF - -
PP: Somtostatins Somatostatin Somatostatin receptor -
SS: Tachykinins Neurokinin A - -
SS: Tachykinins Neurokinin B - -
SS: Tachykinins Substance P - -
PP: Other Bombesin - -
PP: Other Gastrin releasing peptide GRP - -
Gas Nitric oxide NO - -
Gas Carbon monoxide CO - -
Other Anandamide AEA Cannabinoid receptor -
Other Adenosine triphosphate ATP P2Y12 P2X receptor

[edit] Degradation and elimination

Neurotransmitter must be broken down once it reaches the post-synaptic cell to prevent further excitatory or inhibitory signal transduction. For example, acetylcholine, (ACH) (an excitatory neurotransmitter), is broken down by acetylcholinesterase (AchE). Choline is taken up and recycled by the pre-synaptic neuron to synthesize more ACH. Other neurotransmitters such as dopamine are able to diffuse away from their targeted synaptic junctions and are eliminated from the body via the kidneys, or destroyed in the liver. Each neurotransmitter has very specific degradation pathways at regulatory points, which may be the target of the body's own regulatory system or recreational drugs.

[edit] See also

[edit] References

  1. ^ Neurotransmitter at Dorland's Medical Dictionary
  2. ^ a b Rang, H. P. (2003). Pharmacology. Edinburgh: Churchill Livingstone. pp. 474 for noradrenaline system, page 476 for dopamine system, page 480 for serotonin system and page 483 for cholinergic system.. ISBN 0-443-07145-4. 

[edit] External links

Personal tools