Qubit

From Wikipedia, the free encyclopedia

Jump to: navigation, search
Bloch sphere representation of a qubit.
A qubit is not to be confused with a cubit, which is an ancient measure of length.

A quantum bit or qubit ['kju.bɪt] (sometimes also qbit) is a unit of quantum information. That information is described by a state vector in a two-level quantum-mechanical system, which is formally equivalent to a two-dimensional vector space over the complex numbers. In addition, the qubit should have these properties[1]

  • scalability (long coherence time)
  • can be initialized
  • controlled unitary transformations (eg, Rabi oscillations)
  • measurable (it has a readout)
  • scalable

Contents

[edit] Bit versus qubit

A bit is the basic unit of computer information. Regardless of its physical realization, a bit is always understood to be either a 0 or a 1. An analogy to this is a light switch—the down position can represent 0 (normally equated to off) and the up position can represent 1 (normally equated to on).

A qubit has some similarities to a classical bit, but is overall very different. Like a bit, a qubit can have two possible values—normally a 0 or a 1. The difference is that whereas a bit must be either 0 or 1, a qubit can be 0, 1, or a superposition of both.

[edit] Representation

The states a qubit may be measured in are known as basis states (or vectors). As is the tradition with any sort of quantum states, Dirac, or bra-ket notation is used to represent them. This means that the two computational basis states are conventionally written as | 0 \rangle and | 1 \rangle (pronounced "ket 0" and "ket 1").

[edit] Qubit states

A pure qubit state is a linear superposition of those two states. This means that the qubit can be represented as a linear combination of |0 \rangle and |1 \rangle  :

| \psi \rangle = \alpha |0 \rangle + \beta |1 \rangle,\,

where α and β are probability amplitudes and can in general both be complex numbers.

When we measure this qubit in the standard basis, the probability of outcome |0 \rangle is | α | 2 and the probability of outcome |1 \rangle is | β | 2. Because the absolute squares of the amplitudes equate to probabilities, it follows that α and β must be constrained by the equation

| \alpha |^2 + | \beta |^2 = 1 \,

simply because this ensures you must measure either one state or the other.

The state space of a single qubit register can be represented geometrically by the Bloch sphere. This is a two-dimensional space which has an underlying geometry of the surface of a sphere. This essentially means that the single qubit register space has two local degrees of freedom. Represented on such a sphere, a classical bit could lie on only one of the poles.

[edit] Entanglement

An important distinguishing feature between a qubit and a classical bit is that multiple qubits can exhibit quantum entanglement. Entanglement is a nonlocal property that allows a set of qubits to express higher correlation than is possible in classical systems. Take, for example, two entangled qubits in the Bell state

\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle).

In this state, called an equal superposition, there are equal probabilities of measuring either |00\rangle or |11\rangle, as |1/\sqrt{2}|^2 = 1/2.

Imagine that these two entangled qubits are separated, with one each given to Alice and Bob. Alice makes a measurement of her qubit, obtaining—with equal probabilities—either |0\rangle or |1\rangle. Because of the qubits' entanglement, Bob must now get the exact same measurement as Alice; i.e., if she measures a |0\rangle, Bob must measure the same, as |00\rangle is the only state where Alice's qubit is a |0\rangle.

Entanglement also allows multiple states (such as the Bell state mentioned above) to be acted on simultaneously, unlike classical bits that can only have one value at a time. Entanglement is a necessary ingredient of any quantum computation that cannot be done efficiently on a classical computer.

Many of the successes of quantum computation and communication, such as quantum teleportation and superdense coding, make use of entanglement, suggesting that entanglement is a resource that is unique to quantum computation.

[edit] Quantum register

A number of entangled qubits taken together is a qubit register. Quantum computers perform calculations by manipulating qubits within a register.

[edit] Variations of the qubit

Similar to the qubit, a qutrit is a unit of quantum information in a 3-level quantum system. This is analogous to the unit of classical information trit. The term "qudit" is used to denote a unit of quantum information in a d-level quantum system.

[edit] Physical representation

Any two-level system can be used as a qubit. Multilevel systems can be used as well, if they possess two states that can be effectively decoupled from the rest (e.g., ground state and first excited state of a nonlinear oscillator). There are various proposals. Several physical implementations which approximate two-level systems to various degrees were successfully realized. Similarly to a classical bit where the state of a transistor in a processor, the magnetization of a surface in a hard disk and the presence of current in a cable can all be used to represent bits in the same computer, an eventual quantum computer is likely to use various combinations of qubits in its design.

The following is an incomplete list of physical implementations of qubits, and the choices of basis are by convention only.

Physical support Name Information support |0 \rangle |1 \rangle
Single photon (Fock states) Polarization encoding Polarization of light Horizontal Vertical
Photon number Photon number Vacuum Single photon state
Time-bin encoding Time of arrival Early Late
Coherent state of light Squeezed light Quadrature Amplitude-squeezed state Phase-squeezed state
Electrons Electronic spin Spin Up Down
Electron number Charge No electron One electron
Nucleus Nuclear spin addressed through NMR Spin Up Down
Optical lattices Atomic spin Spin Up Down
Josephson junction Superconducting charge qubit Charge Uncharged superconducting island (Q=0) Charged superconducting island (Q=2e, one extra Cooper pair)
Superconducting flux qubit Current Clockwise current Counterclockwise current
Superconducting phase qubit Energy Ground state First excited state
Singly charged quantum dot pair Electron localization Charge Electron on left dot Electron on right dot
Quantum dot Dot spin Spin Down Up

[edit] Qubit storage

In a paper entitled: “Solid-state quantum memory using the 31P nuclear spin,” published in the October 23, 2008 issue of the journal Nature[2], an international team of scientists that included researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) reported the first relatively long (1.75 segs.) and coherent transfer of a superposition state in an electron spin 'processing' qubit to a nuclear spin 'memory' qubit. This event can be considered the first relatively consistent quantum Data storage, a vital step towards the development of quantum computing.

[edit] Origin of the term

The origin of the term qubit is attributed to a paper by Benjamin Schumacher.[3] In the acknowledgments of his paper, Schumacher states that the term qubit was invented in jest, during a conversation with William Wootters. The paper describes a way of compressing states emitted by a quantum source of information so that they require fewer physical resources to store. This procedure is now known as Schumacher compression.

[edit] References

  1. ^ Han, Siyuan from Dept. Physics and Astronomy, Univerity of Kansas, Lawrence. Physics Colloquium at University of Missouri, Kansas City, Feb 2009.
  2. ^ http://www.nature.com/nature/journal/v455/n7216/full/nature07295.html
  3. ^ Schumacher, Benjamin (1995). "Quantum coding". Phys. Rev. A 51: 2738–2747. doi:10.1103/PhysRevA.51.2738. 

[edit] External links


Personal tools