Bioremediation

From Wikipedia, the free encyclopedia

Jump to: navigation, search

Bioremediation can be defined as any process that uses microorganisms, fungi, green plants or their enzymes to return the natural environment altered by contaminants to its original condition. Bioremediation may be employed to attack specific soil contaminants, such as degradation of chlorinated hydrocarbons by bacteria. An example of a more general approach is the cleanup of oil spills by the addition of nitrate and/or sulfate fertilisers to facilitate the decomposition of crude oil by indigenous or exogenous bacteria.

Contents

[edit] Overview and applications

Naturally occurring bioremediation and phytoremediation have been used for centuries. For example, desalination of agricultural land by phytoextraction has a long tradition. Bioremediation technology using microorganisms was reportedly invented by George M. Robinson. He was the assistant county petroleum engineer for Santa Maria, California. During the 1960's, he spent his spare time experimenting with dirty jars and various mixes of microbes.

Bioremediation technologies can be generally classified as in situ or ex situ. In situ bioremediation involves treating the contaminated material at the site while ex situ involves the removal of the contaminated material to be treated elsewhere. Some examples of bioremediation technologies are bioventing, landfarming, bioreactor, composting, bioaugmentation, rhizofiltration, and biostimulation.

Not all contaminants, however, are easily treated by bioremediation using microorganisms. For example, heavy metals such as cadmium and lead are not readily absorbed or captured by organisms. The assimilation of metals such as mercury into the food chain may worsen matters. Phytoremediation is useful in these circumstances, because natural plants or transgenic plants are able to bioaccumulate these toxins in their above-ground parts, which are then harvested for removal[1]. The heavy metals in the harvested biomass may be further concentrated by incineration or even recycled for industrial use.

The elimination of a wide range of pollutants and wastes from the environment requires increasing our understanding of the relative importance of different pathways and regulatory networks to carbon flux in particular environments and for particular compounds and they will certainly accelerate the development of bioremediation technologies and biotransformation processes.[2]

[edit] Genetic engineering approaches

The use of genetic engineering to create organisms specifically designed for bioremediation has great potential.[3] The bacterium Deinococcus radiodurans (the most radioresistant organism known) has been modified to consume and digest toluene and ionic mercury from highly radioactive nuclear waste.[4]

[edit] Mycoremediation

Mycoremediation is a form of bioremediation, the process of using fungi to return an environment (usually soil) contaminated by pollutants to a less contaminated state. The term mycoremediation was coined by Paul Stamets and refers specifically to the use of fungal mycelia in bioremediation.

One of the primary roles of fungi in the ecosystem is decomposition, which is performed by the mycelium. The mycelium secretes extracellular enzymes and acids that break down lignin and cellulose, the two main building blocks of plant fiber. These are organic compounds composed of long chains of carbon and hydrogen, structurally similar to many organic pollutants. The key to mycoremediation is determining the right fungal species to target a specific pollutant. Certain strains have been reported to successfully degrade the nerve gases VX and sarin.

In an experiment conducted in conjunction with Thomas, a major contributor in the bioremediation industry, a plot of soil contaminated with diesel oil was inoculated with mycelia of oyster mushrooms; traditional bioremediation techniques (bacteria) were used on control plots. After four weeks, more than 95% of many of the PAH (polycyclic aromatic hydrocarbons) had been reduced to non-toxic components in the mycelial-inoculated plots. It appears that the natural microbial community participates with the fungi to break down contaminants, eventually into carbon dioxide and water. Wood-degrading fungi are particularly effective in breaking down aromatic pollutants (toxic components of petroleum), as well as chlorinated compounds (certain persistent pesticides; Battelle, 2000).

Mycofiltration is a similar or same process, using fungal mycelia to filter toxic waste and microorganisms from water in soil.

[edit] Advantages

There are a number of cost/efficiency advantages to bioremediation, which can be employed in areas that are inaccessible without excavation. For example, hydrocarbon spills (specifically, petrol spills) or certain chlorinated solvents may contaminate groundwater, and introducing the appropriate electron acceptor or electron donor amendment, as appropriate, may significantly reduce contaminant concentrations after a lag time allowing for acclimation. This is typically much less expensive than excavation followed by disposal elsewhere, incineration or other ex situ treatment strategies, and reduces or eliminates the need for "pump and treat", a common practice at sites where hydrocarbons have contaminated clean groundwater.

[edit] Monitoring bioremediation

The process of bioremediation can be monitored indirectly by measuring the Oxidation Reduction Potential or redox in soil and groundwater, together with pH, temperature, oxygen content, electron acceptor/donor concentrations, and concentration of breakdown products (e.g. carbon dioxide). This table shows the (decreasing) biological breakdown rate as function of the redox potential.

Process Reaction  Redox potential (Eh in mV
aerobic: O2 + 4e + 4H+ → 2H2O 600 ~ 400
anaerobic:  

 

denitrification 2NO3 + 10e + 12H+ → N2 + 6H2O 500 ~ 200
  manganese IV reduction   MnO2 + 2e + 4H+ → Mn2+ + 2H2O     400 ~ 200
iron III reduction Fe(OH)3 + e + 3H+ → Fe2+ + 3H2O 300 ~ 100
sulfate reduction SO42− + 8e +10 H+ → H2S + 4H2O 0 ~ −150
fermentation 2CH2O → CO2 + CH4 −150 ~ −220

This, by itself and at a single site, gives little information about the process of remediation.

  1. it is necessary to sample enough points on and around the contaminated site to be able to determine contours of equal redox potential. Contouring is usually done using specialised software, e.g. using Kriging interpolation.
  2. if all the measurements of redox potential show that electron acceptors have been used up, it's in effect an indicator for total microbial activity. Chemical analysis is also required to determine when the levels of contaminants and their breakdown products have been reduced to below regulatory limits.

[edit] See also

[edit] References

  1. ^ Meagher, RB (2000). "Phytoremediation of toxic elemental and organic pollutants". Current Opinion In Plant Biology 3 (2): 153–162. doi:10.1016/S1369-5266(99)00054-0. PMID 10712958. 
  2. ^ Diaz E (editor). (2008). Microbial Biodegradation: Genomics and Molecular Biology (1st ed. ed.). Caister Academic Press. ISBN 978-1-904455-17-2. http://www.horizonpress.com/biod. 
  3. ^ Lovley, DR (2003). "Cleaning up with genomics: applying molecular biology to bioremediation". Nature Reviews. Microbiology. 1 (1): 35 – 44. doi:10.1038/nrmicro731. PMID 15040178. 
  4. ^ Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000). "Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments". Nature Biotechnology 18 (1): 85 – 90. doi:10.1038/71986. PMID 10625398. 

[edit] External links


Personal tools