Pollution

From Wikipedia, the free encyclopedia

Jump to: navigation, search
Air pollution from World War II production.

Pollution is the introduction of contaminants into an environment that causes instability, disorder, harm or discomfort to the ecosystem i.e. physical systems or living organisms .[1] Pollution can take the form of chemical substances, or energy, such as noise, heat, or light energy. Pollutants, the elements of pollution, can be foreign substances or energies, or naturally occurring; when naturally occurring, they are considered contaminants when they exceed natural levels. Pollution is often classed as point source or nonpoint source pollution. The Blacksmith Institute issues annually a list of the world's worst polluted places. In the 2007 issues the ten top nominees are located in Azerbaijan, China, India, Peru, Russia, Ukraine and Zambia.

Contents

History

Throughout history from Ancient Greece to Andalusia, Ancient China, central Europe during the Renaissance until today, philosophers ranging from Aristotle, Al-Farabi, Al-Ghazali, Averroes, Buddha, Confucius, Dante, Hegel, Avicenna, Lao Tse, Maimonedes, Montesquieu, Nussbaum, Plato, Socrates and Sun Tzu wrote about the pollution of the body as well as the mind and soul.

Prehistory

Humankind has had some effect upon the environment since the Paleolithic era during which the ability to generate fire was acquired. In the Iron Age, the use of tooling led to the practice of metal grinding on a small scale and resulted in minor accumulations of discarded material probably easily dispersed without too much impact. Human wastes would have polluted rivers or water sources to some degree. However, these effects could be expected predominantly to be dwarfed by the natural world.

Ancient cultures

The first advanced civilizations of Mesopotamia, Egypt, India, China, Persia, Greece and Rome increased the use of water for their manufacture of goods, increasingly forged metal and created fires of wood and peat for more elaborate purposes (for example, bathing, heating). The forging of metals appears to be a key turning point in the creation of significant air pollution levels. Core samples of glaciers in Greenland indicate increases in air pollution associated with Greek, Roman and Chinese metal production[2]. Still, at this time the scale of higher activity probably did not disrupt ecosystems.

Middle Ages

The European Dark Ages during the early Middle Ages probably saw a reprieve in widespread pollution, in that industrial activity fell, and population levels did not grow rapidly. Toward the end of the Middle Ages populations grew and concentrated more within cities, creating pockets of readily evident contamination. In certain places air pollution levels were recognizable as health issues, and water pollution in population centers was a serious medium for disease transmission from untreated human waste.

Since travel and widespread information were less common, there did not exist a more general context than that of local consequences in which to consider pollution. Air pollution was largely from wood burning which must be properly ventilated. Septic contamination or poisoning of a clean drinking water source was very easily fatal, and contamination was not well understood. Bad septic contamination and pollution contributed greatly to the Bubonic plague.

Official acknowledgement

But gradually increasing populations and the proliferation of basic industrial processes saw the emergence of a civilization that began to have a much greater collective impact on its surroundings. It was to be expected that the beginnings of environmental awareness would occur in the more developed cultures, particularly in the densest urban centers. The first medium warranting official policy measures in the emerging western world would be the most basic: the air we breathe.

The earliest known writings concerned with pollution were Arabic medical treatises written between the 9th and 13th centuries, by physicians such as al-Kindi (Alkindus), Qusta ibn Luqa (Costa ben Luca), Muhammad ibn Zakarīya Rāzi (Rhazes), Ibn Al-Jazzar, al-Tamimi, al-Masihi, Ibn Sina (Avicenna), Ali ibn Ridwan, Ibn Jumay, Isaac Israeli ben Solomon, Abd-el-latif, Ibn al-Quff, and Ibn al-Nafis. Their works covered a number of subjects related to pollution such as air contamination, water contamination, soil contamination, solid waste mishandling, and environmental assessments of certain localities.[3]

King Edward I of England banned the burning of sea-coal by proclamation in London in 1272, after its smoke had become a problem.[4][5] But the fuel was so common in England that this earliest of names for it was acquired because it could be carted away from some shores by the wheelbarrow. Air pollution would continue to be a problem in England, especially later during the industrial revolution, and extending into the recent past with the Great Smog of 1952. This same city also recorded one of the earlier extreme cases of water quality problems with the Great Stink on the Thames of 1858, which led to construction of the London sewerage system soon afterward.

It was the industrial revolution that gave birth to environmental pollution as we know it today. The emergence of great factories and consumption of immense quantities of coal and other fossil fuels gave rise to unprecedented air pollution and the large volume of industrial chemical discharges added to the growing load of untreated human waste. Chicago and Cincinnati were the first two American cities to enact laws ensuring cleaner air in 1881. Other cities followed around the country until early in the 20th century, when the short lived Office of Air Pollution was created under the Department of the Interior. Extreme smog events were experienced by the cities of Los Angeles and Donora, Pennsylvania in the late 1940s, serving as another public reminder.[6]

Modern awareness

Early Soviet poster, before the modern awareness: "The smoke of chimneys is the breath of Soviet Russia"

Pollution became a popular issue after WW2, when the aftermath of atomic warfare and testing made evident the perils of radioactive fallout. Then a conventional catastrophic event The Great Smog of 1952 in London killed at least 8000 people. This massive event prompted some of the first major modern environmental legislation, The Clean Air Act of 1956.

Pollution began to draw major public attention in the United States between the mid-1950s and early 1970s, when Congress passed the Noise Control Act, the Clean Air Act, the Clean Water Act and the National Environmental Policy Act.

Bad bouts of local pollution helped increase consciousness. PCB dumping in the Hudson River resulted in a ban by the EPA on consumption of its fish in 1974. Long-term dioxin contamination at Love Canal starting in 1947 became a national news story in 1978 and led to the Superfund legislation of 1980. Legal proceedings in the 1990s helped bring to light Chromium-6 releases in California--the champions of whose victims became famous. The pollution of industrial land gave rise to the name brownfield, a term now common in city planning. DDT was banned in most of the developed world after the publication of Rachel Carson's Silent Spring.

The development of nuclear science introduced radioactive contamination, which can remain lethally radioactive for hundreds of thousands of years. Lake Karachay, named by the Worldwatch Institute as the "most polluted spot" on earth, served as a disposal site for the Soviet Union thoroughout the 1950s and 1960s. Second place may go to the to the area of Chelyabinsk U.S.S.R. (see reference below) as the "Most polluted place on the planet".

Nuclear weapons continued to be tested in the Cold War, sometimes near inhabited areas, especially in the earlier stages of their development. The toll on the worst-affected populations and the growth since then in understanding about the critical threat to human health posed by radioactivity has also been a prohibitive complication associated with nuclear power. Though extreme care is practiced in that industry, the potential for disaster suggested by incidents such as those at Three Mile Island and Chernobyl pose a lingering specter of public mistrust. One legacy of nuclear testing before most forms were banned has been significantly raised levels of background radiation.

International catastrophes such as the wreck of the Amoco Cadiz oil tanker off the coast of Brittany in 1978 and the Bhopal disaster in 1984 have demonstrated the universality of such events and the scale on which efforts to address them needed to engage. The borderless nature of atmosphere and oceans inevitably resulted in the implication of pollution on a planetary level with the issue of global warming. Most recently the term persistent organic pollutant (POP) has come to describe a group of chemicals such as PBDEs and PFCs among others. Though their effects remain somewhat less well understood owing to a lack of experimental data, they have been detected in various ecological habitats far removed from industrial activity such as the Arctic, demonstrating diffusion and bioaccumulation after only a relatively brief period of widespread use.

Growing evidence of local and global pollution and an increasingly informed public over time have given rise to environmentalism and the environmental movement, which generally seek to limit human impact on the environment.

Forms of pollution

The major forms of pollution are listed below along with the particular pollutants relevant to each of them:

Pollutants

A pollutant is a waste material that pollutes air, water or soil. Three factors determine the severity of a pollutant: its chemical nature, the concentration and the persistence

Sources and causes

Air pollution comes from both natural and manmade sources. Though globally manmade pollutants from combustion, construction, mining, agriculture and warfare are increasingly significant in the air pollution equation.[8]

Motor vehicle emissions are one of the leading causes of air pollution.[9][10][11] China, United States, Russia, Mexico, and Japan are the world leaders in air pollution emissions. Principal stationary pollution sources include chemical plants, coal-fired power plants, oil refineries,[12] petrochemical plants, nuclear waste disposal activity, incinerators, large livestock farms (dairy cows, pigs, poultry, etc.), PVC factories, metals production factories, plastics factories, and other heavy industry. Agricultural air pollution comes from contemporary practices which include clear felling and burning of natural vegetation as well as spraying of pesticides and herbicides[13]

Some of the more common soil contaminants are chlorinated hydrocarbons (CFH), heavy metals (such as chromium, cadmium--found in rechargeable batteries, and lead--found in lead paint, aviation fuel and still in some countries, gasoline), MTBE, zinc, arsenic and benzene. In 2001 a series of press reports culminating in a book called Fateful Harvest unveiled a widespread practice of recycling industrial byproducts into fertilizer, resulting in the contamination of the soil with various metals. Ordinary municipal landfills are the source of many chemical substances entering the soil environment (and often groundwater), emanating from the wide variety of refuse accepted, especially substances illegally discarded there, or from pre-1970 landfills that may have been subject to little control in the U.S. or EU. There have also been some unusual releases of polychlorinated dibenzodioxins, commonly called dioxins for simplicity, such as TCDD.[14]

Pollution can also be the consequence of a natural disaster. For example, hurricanes often involve water contamination from sewage, and petrochemical spills from ruptured boats or automobiles. Larger scale and environmental damage is not uncommon when coastal oil rigs or refineries are involved. Some sources of pollution, such as nuclear power plants or oil tankers, can produce widespread and potentially hazardous releases when accidents occur.

In the case of noise pollution the dominant source class is the motor vehicle, producing about ninety percent of all unwanted noise worldwide.

Effects

Human health

Adverse air quality can kill many organisms including humans. Ozone pollution can cause respiratory disease, cardiovascular disease, throat inflammation, chest pain, and congestion. Water pollution causes approximately 14,000 deaths per day, mostly due to contamination of drinking water by untreated sewage in developing countries. Oil spills can cause skin irritations and rashes. Noise pollution induces hearing loss, high blood pressure, stress, and sleep disturbance. Mercury has been linked to developmental deficits in children and neurologic symptoms. Lead and other heavy metals have been shown to cause neurological problems. Chemical and radioactive substances can cause cancer and as well as birth defects.

Ecosystems

  • Sulphur dioxide and oxides of nitrogen can cause acid rain which reduces the pH value of soil.
  • Soil can become infertile and unsuitable for plants. This will affect other organisms in the food web.
  • Smog and haze can reduce the amount of sunlight received by plants to carry out photosynthesis.
  • Invasive species can out compete native species and reduce biodiversity. Invasive plants can contribute debris and biomolecules (allelopathy) that can alter soil and chemical compositions of an environment, often reducing native species competitiveness.
  • Biomagnification describes situations where toxins may pass through trophic levels, becoming exponentially more concentrated in the process.
  • Ocean acidification, the ongoing decrease in the pH of the Earth's oceans.
  • Global warming.

Regulation and monitoring

To protect the environment from the adverse effects of pollution, many nations worldwide have enacted legislation to regulate various types of pollution as well as to mitigate the adverse effects of pollution.

Pollution control

Pollution control is a term used in environmental management. It means the control of emissions and effluents into air, water or soil. Without pollution control, the waste products from consumption, heating, agriculture, mining, manufacturing, transportation and other human activities, whether they accumulate or disperse, will degrade the environment. In the hierarchy of controls, pollution prevention and waste minimization are more desirable than pollution control.

Pollution control devices

Perspectives

The earliest precursor of pollution generated by life forms would have been a natural function of their existence. The attendant consequences on viability and population levels fell within the sphere of natural selection. These would have included the demise of a population locally or ultimately, species extinction. Processes that were untenable would have resulted in a new balance brought about by changes and adaptations. At the extremes, for any form of life, consideration of pollution is superseded by that of survival.

For humankind, the factor of technology is a distinguishing and critical consideration, both as an enabler and an additional source of byproducts. Short of survival, human concerns include the range from quality of life to health hazards. Since science holds experimental demonstration to be definitive, modern treatment of toxicity or environmental harm involves defining a level at which an effect is observable. Common examples of fields where practical measurement is crucial include automobile emissions control, industrial exposure (eg Occupational Safety and Health Administration (OSHA) PELs), toxicology (eg LD50), and medicine (eg medication and radiation doses).

"The solution to pollution is dilution", is a dictum which summarizes a traditional approach to pollution management whereby sufficiently diluted pollution is not harmful.[16][17] It is well-suited to some other modern, locally-scoped applications such as laboratory safety procedure and hazardous material release emergency management. But it assumes that the dilutant is in virtually unlimited supply for the application or that resulting dilutions are acceptable in all cases.

Such simple treatment for environmental pollution on a wider scale might have had greater merit in earlier centuries when physical survival was often the highest imperative, human population and densities were lower, technologies were simpler and their byproducts more benign. But these are often no longer the case. Furthermore, advances have enabled measurement of concentrations not possible before. The use of statistical methods in evaluating outcomes has given currency to the principle of probable harm in cases where assessment is warranted but resorting to deterministic models is impractical or unfeasible. In addition, consideration of the environment beyond direct impact on human beings has gained prominence.

Yet in the absence of a superseding principle, this older approach predominates practices throughout the world. It is the basis by which to gauge concentrations of effluent for legal release, exceeding which penalties are assessed or restrictions applied. The regressive cases are those where a controlled level of release is too high or, if enforceable, is neglected. Migration from pollution dilution to elimination in many cases is confronted by challenging economical and technological barriers.

Greenhouse gases and global warming

Historical and projected CO2 emissions by country.
Source: Energy Information Administration.[18][19]

Carbon dioxide, while vital for photosynthesis, is sometimes referred to as pollution, because raised levels of the gas in the atmosphere are affecting the Earth's climate. Disruption of the environment can also highlight the connection between areas of pollution that would normally be classified separately, such as those of water and air. Recent studies have investigated the potential for long-term rising levels of atmospheric carbon dioxide to cause slight but critical increases in the acidity of ocean waters, and the possible effects of this on marine ecosystems.

See also

Air pollution


Soil contamination


Water pollution


Other


References

  1. ^ Pollution - Definition from the Merriam-Webster Online Dictionary
  2. ^ History of Ancient Copper Smelting Pollution During Roman and Medieval Times Recorded in Greenland Ice, Science no. 272, 1996
  3. ^ L. Gari (2002), "Arabic Treatises on Environmental Pollution up to the End of the Thirteenth Century", Environment and History 8 (4), pp. 475-488.
  4. ^ David Urbinato (Summer 1994). "London's Historic "Pea-Soupers"". United States Environmental Protection Agency. http://www.epa.gov/history/topics/perspect/london.htm. Retrieved on 2006-08-02. 
  5. ^ "Deadly Smog". PBS. 2003-01-17. http://www.pbs.org/now/science/smog.html. Retrieved on 2006-08-02. 
  6. ^ James R. Fleming; Bethany R. Knorr of Colby College. "History of the Clean Air Act". American Meteorological Society. http://www.ametsoc.org/sloan/cleanair/. Retrieved on 2006-02-14. 
  7. ^ Concerns about MTBE from U.S. EPA website
  8. ^ Declaration of the United Nations Conference on the Human Environment, 1972
  9. ^ Environmental Performance Report 2001 (Transport, Canada website page)
  10. ^ State of the Environment, Issue: Air Quality (Australian Government website page)
  11. ^ Pollution and Society Marisa Buchanan and Carl Horwitz, University of Michigan
  12. ^ a b Beychok, Milton R. (1967). Aqueous Wastes from Petroleum and Petrochemical Plants (1st Edition ed.). John Wiley & Sons. LCCN 67019834. 
  13. ^ Silent Spring, R Carlson, 1962
  14. ^ Beychok, Milton R. (January 1987). "A data base for dioxin and furan emissions from refuse incinerators". Atmospheric Environment 21 (1): 29–36. doi:10.1016/0004-6981(87)90267-8. 
  15. ^ American Petroleum Institute (API) (February 1990). Management of Water Discharges: Design and Operations of Oil-Water Separators (1st Edition ed.). American Petroleum Institute. 
  16. ^ Gershon Cohen Ph.D.. "The 'Solution' to Pollution Is Still 'Dilution'". Earth Island Institute. http://www.earthisland.org/eijournal/new_articles.cfm?articleID=299&journalID=49. Retrieved on 2006-02-14. 
  17. ^ "What is required". Clean Ocean Foundation. 2001. http://www.cleanocean.org/index_general.asp?menuid=240.010. Retrieved on 2006-02-14. 
  18. ^ World Carbon Dioxide Emissions (Table 1, Report DOE/EIA-0573, 2004, Energy Information Administration)
  19. ^ Carbon dioxide emissions chart (graph on Mongabay website page based on Energy Information Administration's tabulated data)

External links


Personal tools