Computer worm
From Wikipedia, the free encyclopedia
A computer worm is a self-replicating computer program. It uses a network to send copies of itself to other nodes (computers on the network) and it may do so without any user intervention. Unlike a virus, it does not need to attach itself to an existing program. Worms almost always cause at least some harm to the network, if only by consuming bandwidth, whereas viruses almost always corrupt or devour files on a targeted computer.
Contents |
[edit] Payloads
Many worms that have been created are only designed to spread, and don't attempt to alter the systems they pass through. However, as the Morris worm and Mydoom showed, the network traffic and other unintended effects can often cause major disruption. A "payload" is code designed to do more than spread the worm - it might delete files on a host system (e.g., the ExploreZip worm), encrypt files in a cryptoviral extortion attack, or send documents via e-mail. A very common payload for worms is to install a backdoor in the infected computer to allow the creation of a "zombie" under control of the worm author - Sobig and Mydoom are examples which created zombies. Networks of such machines are often referred to as botnets and are very commonly used by spam senders for sending junk email or to cloak their website's address.[1] Spammers are therefore thought to be a source of funding for the creation of such worms,[2][3] and worm writers have been caught selling lists of IP addresses of infected machines.[4] Others try to blackmail companies with threatened DoS attacks.[5]
Backdoors can be exploited by other malware, including worms. Examples include Doomjuice, which spreads better using the backdoor opened by Mydoom, and at least one instance of malware taking advantage of the rootkit and backdoor installed by the Sony/BMG DRM software utilized by millions of music CDs prior to late 2005.
[edit] Worms with good intent
Beginning with the very first research into worms at Xerox PARC there have been attempts to create useful worms. The Nachi family of worms, for example, tried to download and install patches from Microsoft's website to fix vulnerabilities in the host system – by exploiting those same vulnerabilities. In practice, although this may have made these systems more secure, it generated considerable network traffic, rebooted the machine in the course of patching it, and did its work without the consent of the computer's owner or user.
Some worms, such as XSS worms, have been written for research to determine the factors of how worms spread, such as social activity and change in user behavior, while other worms are little more than a prank, such as one that sends the popular image macro of an owl with the phrase "O RLY?" to a print queue in the infected computer.
Most security experts regard all worms as malware, whatever their payload or their writers' intentions.
[edit] Protecting against dangerous computer worms
Worms spread by exploiting vulnerabilities in operating systems. All vendors supply regular security updates[6] (see "Patch Tuesday"), and if these are installed to a machine then the majority of worms are unable to spread to it. If a vendor acknowledges a vulnerability, but has yet to release a security update to patch it, a zero day exploit is possible. However, these are relatively rare.
Users need to be wary of opening unexpected email,[7] and should not run attached files or programs, or visit web sites that are linked to such emails. However, as with the ILOVEYOU worm, and with the increased growth and efficiency of phishing attacks, it remains possible to trick the end-user into running a malicious code.
Anti-virus and anti-spyware software are helpful, but must be kept up-to-date with new pattern files at least every few days. The use of a firewall is also recommended.
In the April-June, 2008, issue of IEEE Transactions on Dependable and Secure Computing, computer scientists describe a potential new way to combat internet worms. The researchers discovered how to contain the kind of worm that scans the Internet randomly, looking for vulnerable hosts to infect. They found that the key is for software to monitor the number of scans that machines on a network sends out. When a machine starts sending out too many scans, it is a sign that it has been infected, allowing administrators to take it off line and check it for viruses.[8][9]
[edit] Mitigation techniques
- TCP Wrapper/libwrap enabled network service daemons
- ACLs in routers and switches
- Packet-filters
- Nullrouting
[edit] See also
- Timeline of notable computer viruses and worms
- Computer virus
- Trojan horse (computing)
- Spam
- Computer surveillance
- XSS Worm
[edit] References
- ^ The Seattle Times: Business & Technology: E-mail viruses blamed as spam rises sharply
- ^ Cloaking Device Made for Spammers
- ^ http://www.channelnewsasia.com/stories/afp_world/view/68810/1/.html
- ^ heise online - Uncovered: Trojans as Spam Robots
- ^ BBC NEWS | Technology | Hacker threats to bookies probed
- ^ USN list | Ubuntu
- ^ Information on the Nimda Worm
- ^ http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4509574&arnumber=4358715&count=10&index=3 Sellke, SH. Shroff, NB. Bagchi, S (2008). Modeling and Automated Containment of Worms. IEEE Transactions on Dependable and Secure Computing. 5(2), 71-86
- ^ Newswise: A New Way to Protect Computer Networks from Internet Worms Retrieved on June 5, 2008.
[edit] External links
- The Wildlist - List of viruses and worms 'in the wild' (i.e. regularly encountered by anti-virus companies)
- Jose Nazario discusses worms - Worms overview by a famous security researcher.
- Computer worm suspect in court
- Vernalex.com's Malware Removal Guide - Guide for understanding, removing and preventing worm infections
- John Shoch, Jon Hupp "The "Worm" Programs - Early Experience with a Distributed Computation"
- RFC 1135 The Helminthiasis of the Internet
- Surfing Safe - A site providing tips/advice on preventing and removing viruses.
- Computer Worms Information
- The Case for Using Layered Defenses to Stop Worms
|