Color printing

From Wikipedia, the free encyclopedia

Jump to: navigation, search

Color printing is the reproduction of an image or text in color (as opposed to simpler black and white or monochrome printing).

While there are many techniques for reproducing images in color, specific graphic processes and industrial equipment are used for mass reproduction of color images on paper. In this sense, "color printing" involves reproduction techniques suited for printing presses capable of thousands or millions of impressions for publishing newspapers and magazines, brochures, cards, posters and similar mass-market items.

In this type of industrial or commercial printing, the technique used to print full-color images, such as color photographs, is referred to as four-color-process printing, because four inks are used: three primary colors plus black. The "subtractive" primary ink colors are cyan (a bright blue), magenta (a vivid red-purple), and yellow; which are abbreviated as CMYK.

Two graphic techniques are required to prepare images for four-color printing. In the "pre-press" stage, original images are translated into forms that can be used on a printing press, through "color separation" and "screening" or "halftoning." These steps make possible the creation of printing plates that can transfer color impressions to paper on printing presses based on the principles of lithography.

An emerging method of full-color printing is six-color process printing (for example, Pantone's Hexachrome system) which adds orange and green to the traditional CMYK inks for a larger and more vibrant gamut, or color range. However, such alternate color systems still rely on color separation, halftoning and lithography to produce printed images. Within the specialist area of printed packaging, an emerging method of full-color printing is another system, Chapter1, developed by design group LFH. Chapter1 can be tailored to individual companies and was recently adopted by Unilever. It involves the traditional process colors (cyan, magenta and yellow) plus three additional colors chosen to best reproduce a particular company’s range of branded packaging.

Color printing can also involve as few as one color ink, or multiple color inks which are not the primary colors. Using a limited number of color inks, or specific color inks in addition to the primary colors, is referred to as "spot color" printing. Generally, spot-color inks are specific formulations that are designed to print alone, rather than to blend with other inks on the paper to produce various hues and shades. The range of available spot color inks, much like paint, is nearly unlimited, and much more varied than the colors that can be produced by four-color-process printing. Spot-color inks range from subtle pastels to intense fluorescents to reflective metallics.

Color printing involves a series of steps, or transformations, to generate a quality color reproduction. The following sections focus on the steps used when reproducing a color image in CMYK printing, along with some historical perspective.

Contents

[edit] Color separation process

The process of color separation starts by separating the original artwork into red, green, and blue components (for example by a digital scanner). Before digital imaging was developed, the traditional method of doing this was to photograph the image three times, using a filter for each color. However this is achieved, the desired result is three grayscale images, which represent the red, green, and blue (RGB) components of the original image:

The next step is to invert each of these separations. When a negative image of the red component is produced, the resulting image represents the cyan component of the image. Likewise, negatives are produced of the green and blue components to produce magenta and yellow separations, respectively. This is done because cyan, magenta, and yellow are subtractive primaries which each represent two of the three additive primaries (RGB) after one additive primary has been subtracted from white light.


Cyan, magenta, and yellow are the three main pigments used for color reproduction. When these three colors are combined in printing, the result should be a reasonable reproduction of the original, but in practice this is not the case. Due to limitations in the ink pigments, the darker colors are dirty and muddied. To resolve this, a black separation is also created, which improves the shadow and contrast of the image. Numerous techniques exist to derive this black separation from the original image; these include grey component replacement, under color removal, and under color addition. This printing technique is referred to as CMYK (the "K" being short for "key." In this case, the key color is black).

Today's digital printing methods do not have the restriction of a single color space that traditional CMYK processes do. Many presses can print from files that were ripped with images using either RGB or CMYK modes. The color reproduction abilities of a particular color space can vary; the process of obtaining accurate colors within a color model is called color matching.

[edit] Screening

Inks used in color printing presses are semi-transparent and can be printed on top of each other to produce different hues. For example, green results from printing yellow and cyan inks on top of each other. However, a printing press cannot vary the amount of ink applied except through "screening," a process that represents lighter shades as tiny dots, rather than solid areas, of ink. This is analogous to mixing white paint into a color to lighten it, except the white is the paper itself. In process color printing, the screened image, or halftone for each ink color is printed in succession. The screen grids are set at different angles, and the dots therefore create tiny rosettes, which, through a kind of optical illusion, appear to form a continuous-tone image. You can view the halftone screens that create printed images under magnification.

Traditionally, halftone screens were generated by inked lines on two sheets of glass that were cemented together at right angles. Each of the color separation films were then exposed through these screens. The resulting high-contrast image, once processed, had dots of varying diameter depending on the amount of exposure that area received, which was modulated by the grayscale separation film image.

The glass screens were made obsolete by high-contrast films where the halftone dots were exposed with the separation film. This in turn was replaced by a process where the halftones are electronically generated directly on the film with a laser. Most recently, computer to plate (CTP) technology has allowed printers to bypass the film portion of the process entirely. CTP images the dots directly on the printing plate with a laser, saving money, increasing quality (by reducing the repeated generations), reducing lead-times, and saving the environment from toxic film-processing chemicals.

Screens with a "frequency" of 60 to 120 lines per inch (lpi) reproduce color photographs in newspapers. The coarser the screen (lower frequency), the lower the quality of the printed image. Highly absorbent newsprint requires a lower screen frequency than less-absorbent coated paper stock used in magazines and books, where screen frequencies of 133 to 200 lpi and higher are used.

The measure of how much an ink dot spreads and becomes larger on paper is called dot gain. This phenomenon must be accounted for in photographic or digital preparation of screened images. Dot gain is higher on more absorbent, uncoated paper stock such as newsprint.

[edit] References

  • Bruno, Michael H. (Ed.) (1995). Pocket Pal: A Graphic Arts Production Handbook (16th ed.). Memphis: International Paper
  • Hunt, R.W.G., The Reproduction of Color (1957, 1961, 1967, 1975) ISBN 0-85242-356-X
  • Yule, John A.C., Principles of Color Reproduction (1967, 2000) ISBN 0-88362-222-X
  • Morovic, J., Color Gamut Mapping (2008) ISBN 978-0-470-03032-5

[edit] See also

[edit] External links

Personal tools